【題目】已知,
,
.
(1)討論函數的單調性;
(2)記,設
,
為函數
圖象上的兩點,且
.
(i)當時,若
在
,
處的切線相互垂直,求證:
;
(ii)若在點,
處的切線重合,求
的取值范圍.
【答案】(1)見解析(2)
【解析】試題分析:(1)先求函數導數,轉化為研究導函數零點,即方程=0的根的情況,當
,導函數不變號,在
上單調遞減,當
時,有兩個不等根,列表分析導函數符號變化規律,確定對應單調區間,(2)(i)利用導數幾何意義化簡條件:
在
,
處的切線相互垂直,得
,利用基本不等式證明不等式,(ii)先分別求出切線方程,再根據切線重合得
,消元
得
,利用導數研究函數
,
單調性,確定函數
值域,進而確定
的取值范圍.
試題解析:解:(1),則
,
當即
時,
,
在
上單調遞減,
當時即
時,
,
此時在
和
上都是單調遞減的,在
上是單調遞增的;
(2)(i),據題意有
,又
,
則且
,
,
法1: ,
當且僅當即
,
時取等號.
法2: ,
,
當且僅當時取等號.
(ii)要在點處的切線重合,首先需要在點
處的切線的斜率相等,
而時,
,則必有
,即
,
,
處的切線方程是:
處的切線方程是:
,
即,
據題意則,
,
設,
,
,
設,
在
上恒成立,
則在
上單調遞增
,
則,
在
上單調遞增,
則,再設
,
,
,
在
上單調遞增,
,
則在
恒成立,
即當時,
的值域是
,
故,即為所求.
科目:高中數學 來源: 題型:
【題目】在△ABC中,角A、B、C所對的邊分別是a、b、c滿足:cosAcosC+sinAsinC+cosB= ,且a,b,c成等比數列,
(1)求角B的大;
(2)若 +
=
,a=2,求三角形ABC的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列判斷正確的是( )
A.a=7,b=14,A=30°,有兩解
B.a=30,b=25,A=150°,有一解
C.a=6,b=9,A=45°,有兩解
D.a=9,b=10,A=60°,無解
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}滿足a1= ,an=
(n≥2,n∈N).
(1)試判斷數列 是否為等比數列,并說明理由;
(2)設bn= ,求數列{bn}的前n項和Sn;
(3)設cn=ansin ,數列{cn}的前n項和為Tn . 求證:對任意的n∈N* , Tn<
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】《九章算術》中的“兩鼠穿墻題”是我國數學的古典名題:“今有垣厚若干尺,兩鼠對穿,大鼠日一尺,小鼠也日一尺,大鼠日自倍,小鼠日自半,問何日相逢,各穿幾何?”題意是:“有兩只老鼠從墻的兩邊打洞穿墻,大老鼠第一天進一尺,以后每天加倍;小老鼠第一天也進一尺,以后每天減半.”如果墻足夠厚,為前
天兩只老鼠打洞之和,則
_________________尺.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com