精英家教網 > 高中數學 > 題目詳情

【題目】已知, , .

(1)討論函數的單調性;

(2)記,設, 為函數圖象上的兩點,且.

(i)當時,若, 處的切線相互垂直,求證: ;

(ii)若在點 處的切線重合,求的取值范圍.

【答案】(1)見解析(2)

【解析】試題分析:(1)先求函數導數,轉化為研究導函數零點,即方程=0的根的情況,當,導函數不變號,在上單調遞減,當時,有兩個不等根,列表分析導函數符號變化規律,確定對應單調區間,(2)(i)利用導數幾何意義化簡條件: , 處的切線相互垂直,得,利用基本不等式證明不等式,(ii)先分別求出切線方程,再根據切線重合得,消元,利用導數研究函數 單調性,確定函數值域,進而確定的取值范圍.

試題解析:解:(1),則,

時, , 上單調遞減,

時即時, ,

此時上都是單調遞減的,在上是單調遞增的;

(2)(i),據題意有,又,

, ,

法1: ,

當且僅當, 時取等號.

法2: ,

當且僅當時取等號.

(ii)要在點處的切線重合,首先需要在點處的切線的斜率相等,

時, ,則必有,即,

處的切線方程是:

處的切線方程是: ,

據題意則 ,

, , ,

上恒成立,

上單調遞增,

, 上單調遞增,

,再設,

, 上單調遞增, ,

恒成立,

即當時, 的值域是

,即為所求.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】在△ABC中,角A、B、C所對的邊分別是a、b、c滿足:cosAcosC+sinAsinC+cosB= ,且a,b,c成等比數列,
(1)求角B的大;
(2)若 + = ,a=2,求三角形ABC的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列判斷正確的是(
A.a=7,b=14,A=30°,有兩解
B.a=30,b=25,A=150°,有一解
C.a=6,b=9,A=45°,有兩解
D.a=9,b=10,A=60°,無解

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數.

(1)當時,求曲線在點處的切線方程;

(2)設,若對任意的,存在使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】10y1(2)x02(3),求數字x,y的值及與此兩數等值的十進制數.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知a<0,解關于x的不等式ax2+(1﹣a)x﹣1>0.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數, 為常數),函數為自然對數的底).

(1)討論函數的極值點的個數;

(2)若不等式恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列{an}滿足a1= ,an= (n≥2,n∈N).
(1)試判斷數列 是否為等比數列,并說明理由;
(2)設bn= ,求數列{bn}的前n項和Sn;
(3)設cn=ansin ,數列{cn}的前n項和為Tn . 求證:對任意的n∈N* , Tn

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】《九章算術》中的“兩鼠穿墻題”是我國數學的古典名題:“今有垣厚若干尺,兩鼠對穿,大鼠日一尺,小鼠也日一尺,大鼠日自倍,小鼠日自半,問何日相逢,各穿幾何?”題意是:“有兩只老鼠從墻的兩邊打洞穿墻,大老鼠第一天進一尺,以后每天加倍;小老鼠第一天也進一尺,以后每天減半.”如果墻足夠厚,為前天兩只老鼠打洞之和,則_________________尺.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视