【題目】已知命題:實數
滿足
,其中
;命題
:方程
表示雙曲線.
(1)若,且
為真,求實數
的取值范圍;
(2)若是
的充分不必要條件,求實數
的取值范圍.
【答案】(1);(2)
.
【解析】試題分析:
先由命題解得
;命題
得
,
(1)當,得命題
,再由
為真,得
真且
真,即可求解
的取值范圍.
(2)由是
的充分不必要條件,則
是
的充分必要條件,根據則
,即可求解實數
的取值范圍.
試題解析:
命題:由題得
,又
,解得
;
命題:
,解得
.
(1)若,命題
為真時,
,
當為真,則
真且
真,
∴解得
的取值范圍是
.
(2)是
的充分不必要條件,則
是
的充分必要條件,
設,
,則
;
∴∴實數
的取值范圍是
.
【題型】解答題
【結束】
19
【題目】已知拋物線頂點在原點,焦點在軸上,又知此拋物線上一點
到焦點的距離為6.
(1)求此拋物線的方程;
(2)若此拋物線方程與直線相交于不同的兩點
、
,且
中點橫坐標為2,求
的值.
科目:高中數學 來源: 題型:
【題目】“酒后駕車”和“醉酒駕車”,其檢測標準是駕駛人員血液中的酒精含量Q(簡稱血酒含量,單位是毫克/100毫升),當20≤Q≤80時,為酒后駕車;當Q>80時,為醉酒駕車.某市交通管理部門于某天晚上8點至11點設點進行一次攔查行動,共依法查出了60名飲酒后違法駕駛機動車者,如圖為這60名駕駛員抽血檢測后所得結果畫出的頻率分布直方圖(其中Q≥140的人數計入120≤Q<140人數之內).
(1)求此次攔查中醉酒駕車的人數;
(2)從違法駕車的60人中按酒后駕車和醉酒駕車利用分層抽樣抽取8人做樣本進行研究,再從抽取的8人中任取3人,求3人中含有醉酒駕車人數X的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】學校從參加高一年級期中考試的學生中抽出名學生,并統計了她們的數學成績(成績均為整數且滿分為
分),數學成績分組及各組頻數如下:
樣本頻率分布表:
分組 | 頻數 | 頻率 |
合計 |
(1)在給出的樣本頻率分布表中,求的值;
(2)估計成績在分以上(含
分)學生的比例;
(3)為了幫助成績差的學生提高數學成績,學校決定成立“二幫一”小組,即從成績在的學生中選兩位同學,共同幫助成績在
中的某一位同學.已知甲同學的成績為
分,乙同學的成績為
分,求甲、乙兩同學恰好被安排在同一小組的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2016年一交警統計了某段路過往車輛的車速大小與發生的交通事故次數,得到如下表所示的數據:
車速 | |||||
事故次數 |
(1)請畫出上表數據的散點圖;
(2)請根據上表提供的數據,用最小二乘法求出關于
的線性回歸方程
;
(3)試根據(2)求出的線性回歸方程,預測2017年該路段路況及相關安全設施等不變的情況下,車速達到時,可能發生的交通事故次數.
(參考數據:)
[參考公式:]
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
(1)當時,求函數
在點
處的切線方程;
(2)求函數的極值;
(3)若函數在區間
上是增函數,試確定
的取值范圍.
【答案】(1);(2)當
時,
恒成立,
不存在極值.當
時,
有極小值
無極大值.(3)
.
【解析】試題分析:
(1)當時,求得
,得到
的值,即可求解切線方程.
(2)由定義域為,求得
,分
和
時分類討論得出函數的單調區間,即可求解函數的極值.
(3)根據題意在
上遞增,得
對
恒成立,進而求解實數
的取值范圍.
試題解析:
(1)當時,
,
,
,又
,∴切線方程為
.
(2)定義域為,
,當
時,
恒成立,
不存在極值.
當時,令
,得
,當
時,
;當
時,
,
所以當時,
有極小值
無極大值.
(3)∵在
上遞增,∴
對
恒成立,即
恒成立,∴
.
點睛:導數是研究函數的單調性、極值(最值)最有效的工具,而函數是高中數學中重要的知識點,所以在歷屆高考中,對導數的應用的考查都非常突出 ,本專題在高考中的命題方向及命題角度 從高考來看,對導數的應用的考查主要從以下幾個角度進行: (1)考查導數的幾何意義,往往與解析幾何、微積分相聯系. (2)利用導數求函數的單調區間,判斷單調性;已知單調性,求參數. (3)考查數形結合思想的應用.
【題型】解答題
【結束】
22
【題目】已知圓:
和點
,
是圓
上任意一點,線段
的垂直平分線和
相交于點
,
的軌跡為曲線
.
(1)求曲線的方程;
(2)點是曲線
與
軸正半軸的交點,直線
交
于
、
兩點,直線
,
的斜率分別是
,
,若
,求:①
的值;②
面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知偶函數滿足:當
時,
,
,當
時,
.
()求當
時,
的表達式.
()若直線
與函數
的圖象恰好有兩個公共點,求實數
的取值范圍.
()試討論當實數
,
滿足什么條件時,函數
有
個零點且這
個零點從小到大依次成等差數列.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com