【題目】某校學生參加了“鉛球”和“立定跳遠”兩個科目的體能測試,每個科目的成績分為,
,
,
,
五個等級,分別對應5分,4分,3分,2分,1分,該校某班學生兩科目測試成績的數據統計如圖所示,其中“鉛球”科目的成績為
的學生有8人.
(Ⅰ)求該班學生中“立定跳遠”科目中成績為的人數;
(Ⅱ)若該班共有10人的兩科成績得分之和大于7分,其中有2人10分,3人9分,5人8分.從這10人中隨機抽取兩人,求兩人成績之和的分布列和數學期望.
【答案】(1)3人;(2)見解析.
【解析】試題分析:(Ⅰ)由“鉛球”科目中成績為E的學生有10人,頻率為0.2,能求出該班有50人,由此能求出該班學生中“立定跳遠”科目中成績等級為A的人數.
(Ⅱ)設兩人成績之和為X,則X的值可能為:16,17,18,19,20,分別求出相應的概率,由此能求出X的分布列及EX.
解:(Ⅰ)∵“鉛球”科目中成績為E的學生有10人,頻率為0.2,
∴該班有:=50人,
∴該班學生中“立定跳遠”科目中成績等級為A的人數為:
50(1﹣0.375﹣0.375﹣0.150﹣0.020)=4,
∴該班學生中“立定跳遠”科目中成績為A的人數為4人.
(Ⅱ)設兩人成績之和為X,則X的值可能為:16,17,18,19,20,
P(X=16)==
,
P(X=17)==
,
P(X=18)==
,
P(X=19)==
,
P(X=20)==
,
∴X的分布列為:
EX==
.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)對任意的x∈R,都有f(﹣x)+f(x)=﹣6,且當x≥0時,f(x)=2x﹣4,定義在R上的函數g(x)=a(x﹣a)(x+a+1),兩函數同時滿足:x∈R,都有f(x)<0或g(x)<0;x∈(﹣∞,﹣1),f(x)g(x)<0,則實數a的取值范圍為( )
A.(﹣3,0)
B.
C.(﹣3,﹣1)
D.(﹣3,﹣1]
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C: =1(a>b>0)的短軸一個端點到右焦點F的距離為2,且過點
.
(1)求橢圓C的方程;
(2)設M,N為橢圓C上不同的兩點,A,B分別為橢圓C上的左右頂點,直線MN既不平行與坐標軸,也不過橢圓C的右焦點F,若∠AFM=∠BFN,求證:直線MN過定點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,某海面上有、
、
三個小島(面積大小忽略不計),
島在
島的北偏東
方向
處,
島在
島的正東方向
處.
(1)以為坐標原點,
的正東方向為
軸正方向,
為單位長度,建立平面直角坐標系,寫出
、
的坐標,并求
、
兩島之間的距離;
(2)已知在經過、
、
三個點的圓形區域內有未知暗礁,現有一船在
島的南偏西
方向距
島
處,正沿著北偏東
行駛,若不改變方向,試問該船有沒有觸礁的危險?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】a,b為空間中兩條互相垂直的直線,等腰直角三角形ABC的直角邊AC所在直線與a,b都垂直,斜邊AB以直線AC為旋轉軸旋轉,有下列結論:
①當直線AB與a成60°角時,AB與b成30°角;
②當直線AB與a成60°角時,AB與b成60°角;
③直線AB與a所成角的最小值為45°;
④直線AB與a所成角的最小值為60°;
其中正確的是(填寫所有正確結論的編號)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(12分)
(1)證明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在多面體中,平面
平面
,四邊形
為正方形,四邊形
為梯形,且
,
,
.
(Ⅰ)求證:平面
;
(Ⅱ)求證:平面
;
(Ⅲ)在線段上是否存在點
,使得
平面
?若存在,求出
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,底面
是菱形,對角線
,
交于點
.
(Ⅰ)若,求證:
平面
;
(Ⅱ)若平面平面
,求證:
;
(Ⅲ)在棱上是否存在點
(異于點
),使得
平面
?說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com