精英家教網 > 高中數學 > 題目詳情

【題目】已知下圖是四面體及其三視圖,的中點,的中點.

1)求四面體的體積;

2)求與平面所成的角;

【答案】1;(2.

【解析】

1)由三視圖得出四面體的底面是直角三角形,且可得出兩直角邊的邊長,從而求出底面三角形的面積,由三視圖可得出該四面體的高,再利用錐體的體積公式可求出四面體的體積;

2)通過得出點到平面的距離,利用直線與平面所成角的定義得出直線與平面所成角的正弦值,從而可求出直線與平面所成角的大小.

1)由三視圖可知,四面體是直三棱錐,且底面是以為直角的直角三角形,,則的面積為

由三視圖可知,底面,且,

因此,四面體的體積為

2的中點,的中點,

到平面的距離為,

由勾股定理,

邊上的高為

,,

設點到平面的距離為,則

,,解得

連接,則,

與平面所成的角為,則,

與平面所成的角為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,設拋物線的準線軸交于橢圓的右焦點的左焦點.橢圓的離心率為,拋物線與橢圓交于軸上方一點,連接并延長其交于點, 上一動點,且在之間移動.

(1)當取最小值時,求的方程;

(2)若的邊長恰好是三個連續的自然數,當面積取最大值時,求面積最大值以及此時直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系中,直線的參數方程為為參數,為直線的傾斜角),以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,曲線的極坐標方程為.

(1)寫出曲線的直角坐標方程,并求時直線的普通方程;

(2)直線和曲線交于兩點,點的直角坐標為,求的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】程大位是明代著名數學家,他的《新編直指算法統宗》是中國歷史上一部影響巨大的著作.卷八中第33問:“今有三角果一垛,底闊每面七個.問該若干?”如圖是解決該問題的程序框圖.執行該程序框圖,求得該垛果子的總數S為( )

A.28B.56C.84D.120

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,橢圓)的左右兩個焦點分別是、,在橢圓上運動.

1)若對有最大值為120°,求出、的關系式;

2)若點是在橢圓上位于第一象限的點,過點作直線的垂線,過作直線的垂線,若直線、的交點在橢圓上,求點的坐標;

3)若設,在(2)成立的條件下,試求出、兩點間距離的函數,并求出的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】平面直角坐標系中,直線的參數方程為,(為參數.以原點為極點,軸正半軸為極軸建立極坐標系曲線的極坐標方程為

(1)寫出直線的極坐標方程與曲線的直角坐標方程;

(2)已知與直線平行的直線過點且與曲線交于兩點,試求

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

(1)若不等式的解集為,求a的值;

(2)在(1)的條件下,若存在,使,求t的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】甲、乙兩人玩猜數字游戲,先由甲心中任想一個數字,記為,再由乙猜甲剛才想的數字把乙猜的數字記為,且,若,則稱甲乙“心有靈犀”,現任意找兩個人玩這個游戲,得出他們“心有靈犀”的概率為________

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某海域有兩個島嶼,島在島正東4海里處,經多年觀察研究發現,某種魚群洄游的路線是曲線,曾有漁船在距島、島距離和為8海里處發出過魚群。以所在直線為軸,的垂直平分線為軸建立平面直角坐標系.

1)求曲線的標準方程;

2)某日,研究人員在兩島同時用聲納探測儀發出不同頻率的探測信號(傳播速度相同),兩島收到魚群在處反射信號的時間比為,問你能否確定處的位置(即點的坐標)?

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视