【題目】已知曲線和曲線
交于A,B兩點(點A在第二象限).過A作斜率為
的直線
交曲線M于點C(不同于點A),過點
作斜率為
的直線
交曲線
于E,F兩點,且
.
(I)求的取值范圍;
(Ⅱ)設的面積為S,求
的最大值.
科目:高中數學 來源: 題型:
【題目】2021年起,新高考科目設置采用“”模式,普通高中學生從高一升高二時將面臨著選擇物理還是歷史的問題,某校抽取了部分男、女學生調查選科意向,制作出如右圖等高條形圖,現給出下列結論:
①樣本中的女生更傾向于選歷史;
②樣本中的男生更傾向于選物理;
③樣本中的男生和女生數量一樣多;
④樣本中意向物理的學生數量多于意向歷史的學生數量.
根據兩幅條形圖的信息,可以判斷上述結論正確的有( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
的短軸長為
,離心率為
.
(1)求橢圓的方程;
(2)求過橢圓的右焦點且傾斜角為135°的直線,被橢圓截得的弦長;
(3)若直線與橢圓
相交于
,
兩點(
不是左右頂點),且以
為直徑的圓過橢圓
的右頂點,求證:直線
過定點,并求出該定點的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,已知拋物線
的焦點為
,準線為
,
是拋物線上
上一點,且點
的橫坐標為
,
.
(1)求拋物線的方程;
(2)過點的直線
與拋物線
交于
、
兩點,過點
且與直線
垂直的直線
與準線
交于點
,設
的中點為
,若
、
、
四點共圓,求直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在平面直角坐標系中,直線
的參數方程為
(
為參數),在以坐標原點
為極點,以
軸正半軸為極軸的極坐標中,圓
的方程為
.
(1)寫出直線的普通方程和圓
的直角坐標方程;
(2)若點的坐標為
,圓
與直線
交于
兩點,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設,
分別是橢圓
的左,右焦點,
兩點分別是橢圓
的上,下頂點,
是等腰直角三角形,延長
交橢圓
于
點,且
的周長為
.
(1)求橢圓的方程;
(2)設點是橢圓
上異于
的動點,直線
與直
分別相交于
兩點,點
,試問:
的外接圓是否恒過
軸上的定點(異于點
)?若是,求該定點坐標;若否,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,已知直線
的參數方程為
(
為參數,
),以原點
為極點,以
軸的非負半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(1)寫出直線的極坐標方程和曲線
的直角坐標方程;
(2)若直線與曲線
相交于
,
兩點,且
,求
的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com