設分別是橢圓的
左,右焦點。
(Ⅰ)若是第一象限內該橢圓上的一點,且
,求點
的坐標。
(Ⅱ)設過定點的直線與橢圓交于不同的兩點
,且
為銳角(其中O為坐標原點),求直線
的斜率
的取值范圍。
科目:高中數學 來源: 題型:解答題
如圖,設橢圓的中心為原點O,長軸在x軸上,上頂點為A,左、右焦點分別為F1,F2,線段OF1,OF2的中點分別為B1,B2,且△AB1B2是面積為4的直角三角形.
(1)求該橢圓的離心率和標準方程;
(2)過B1作直線l交橢圓于P,Q兩點,使PB2⊥QB2,求直線l的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在直角坐標系xOy中,直線l的方程為x-y+4=0,曲線C的參數方程為 .
(Ⅰ)已知在極坐標(與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,點P的極坐標為,判斷點P與直線l的位置關系;
(Ⅱ)設點Q是曲線C上的一個動點,求它到直線l的距離的最值;
(Ⅲ)請問是否存在直線 ,
∥l且
與曲線C的交點A、B滿足
;
若存在請求出滿足題意的所有直線方程,若不存在請說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,已知橢圓的中心在原點,其上、下頂點分別為
,點
在直線
上,點
到橢圓的左焦點的距離為
.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)設是橢圓上異于
的任意一點,點
在
軸上的射影為
,
為
的中點,直線
交直線
于點
,
為
的中點,試探究:
在橢圓上運動時,直線
與圓
:
的位置關系,并證明你的結論.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知拋物線的頂點在坐標原點,焦點為,點
是點
關于
軸的對稱點,過點
的直線交拋物線于
兩點。
(1)試問在軸上是否存在不同于點
的一點
,使得
與
軸所在的直線所成的銳角相等,若存在,求出定點
的坐標,若不存在說明理由。
(2)若的面積為
,求向量
的夾角;
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知雙曲線的漸近線方程為
,左焦點為F,過
的直線為
,原點到直線
的距離是
(1)求雙曲線的方程;
(2)已知直線交雙曲線于不同的兩點C,D,問是否存在實數
,使得以CD為直徑的圓經過雙曲線的左焦點F。若存在,求出m的值;若不存在,請說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,已知拋物線的焦點為
,過焦點
且不平行于
軸的動直線
交拋物線于
,
兩點,拋物線在
、
兩點處的切線交于點
.
(Ⅰ)求證:,
,
三點的橫坐標成等差數列;
(Ⅱ)設直線交該拋物線于
,
兩點,求四邊形
面積的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知是橢圓的左、右焦點,O為坐標原點,點P
在橢圓上,線段
與y軸的交點M滿足
(Ⅰ) 求橢圓的標準方程;
(Ⅱ) 圓O是以為直徑的圓,直線
:
與圓相切,并與橢圓交于不同的兩點
,當
,且滿足
時,求直線
的方程。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com