精英家教網 > 高中數學 > 題目詳情

【題目】已知橢圓的左右焦點分別為、,其短軸的兩個端點分別為,若;是邊長為2的等邊三角形.

1)求橢圓的方程;

2)過點且斜率為的直線交橢圓兩點,在軸上是否存在定點,使得直線,的斜率乘積為定值,若存在,求出定點,若不存在,請說明理由.

【答案】12)存在;定點

【解析】

1)根據已知可得,即可求出橢圓的方程;

2)假設滿足條件的定點存在,設為,設直線的方程為,與橢圓方程聯立,設,,得到關系,再由,利用關系,化簡為關系式,利用其為定值則不含項,進而得到關于的方程,求解即可.

1)因為是邊長為2的等邊三角形,

所以,解得,,所以

所以橢圓的方程為.

2)依題意直線斜率存在,設直線的方程為,

,

整理得

時,得,

設存在定點滿足題意,則

.

,,

,當

故存在滿足題意的定點.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數.

1)證明:當時,函數有唯一的極值點;

2)設為正整數,若不等式內恒成立,求的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在傳染病學中,通常把從致病刺激物侵入機體或者對機體發生作用起,到機體出現反應或開始呈現該疾病對應的相關癥狀時止的這一階段稱為潛伏期.一研究團隊統計了某地區100名患者的相關信息,得到如下表格:

潛伏期(單位:天)

人數

85

205

310

250

130

15

5

1)求這1000名患者的潛伏期的樣本平均數(同一組中的數據用該組區間的中點值作代表);

2)該傳染病的潛伏期受諸多因素的影響,為研究潛伏期與患者年齡的關系,以潛伏期是否超過6天為標準進行分層抽樣,從上述1000名患者中抽取200人,得到如下列聯表.請將列聯表補充完整,并根據列聯表判斷是否有95%的把握認為潛伏期與患者年齡有關;

潛伏期

潛伏期

總計

50歲以上(含50歲)

100

50歲以下

55

總計

200

附:

0.05

0.025

0.010

3.841

5.024

6.635

,其中

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的右焦點在圓上,直線交橢圓于,兩點.

1)求橢圓的方程;

2)若為坐標原點),求的值;

3)設點關于軸對稱點為與點不重合),且直線軸交于點,試問的面積是否存在最大值?若存在,求出這個最大值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知曲線與曲線交于,兩點,且的周長為

(Ⅰ)求曲線的方程.

(Ⅱ)設過曲線焦點的直線與曲線交于,兩點,記直線,的斜率分別為.求證:為定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知分別是離心率為的橢圓的左、右頂點,是橢圓的右焦點,且.

1)求橢圓的方程;

2)已知動直線與橢圓有且只有一個公共點.

①若軸于點,求點橫坐標的取值范圍;

②設直線交直線于點,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線的焦點為,直線與拋物線交于,兩點.

1)若過點,證明:;

2)若,點在曲線上,,的中點均在拋物線上,求面積的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知為拋物線上一點,斜率分別為,的直線PA,PB分別交拋物線于點A,B(不與點P重合).

1)證明:直線AB的斜率為定值;

2)若△ABP的內切圓半徑為.

i)求△ABP的周長(用k表示);

ii)求直線AB的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,點為正方形上異于點,的動點,將沿翻折成,在翻折過程中,下列說法正確的是(

A.存在點和某一翻折位置,使得

B.存在點和某一翻折位置,使得平面

C.存在點和某一翻折位置,使得直線與平面所成的角為45°

D.存在點和某一翻折位置,使得二面角的大小為60°

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视