【題目】為加強環境保護,治理空氣污染,環境監測部門對某市空氣質量進行調研,隨機抽查了天空氣中的
和
濃度(單位:
),得下表:
(1)估計事件“該市一天空氣中濃度不超過
,且
濃度不超過
”的概率;
(2)根據所給數據,完成下面的列聯表:
(3)根據(2)中的列聯表,判斷是否有的把握認為該市一天空氣中
濃度與
濃度有關?
附:,
科目:高中數學 來源: 題型:
【題目】在全面抗擊新冠肺炎疫情這一特殊時期,我市教育局提出“停課不停學”的口號,鼓勵學生線上學習.某校數學教師為了調查高三學生數學成績與線上學習時間之間的相關關系,對高三年級隨機選取45名學生進行跟蹤問卷,其中每周線上學習數學時間不少于5小時的有19人,余下的人中,在檢測考試中數學平均成績不足120分的占,統計成績后得到如下
列聯表:
分數不少于120分 | 分數不足120分 | 合計 | |
線上學習時間不少于5小時 | 4 | 19 | |
線上學習時間不足5小時 | |||
合計 | 45 |
(1)請完成上面列聯表;并判斷是否有99%的把握認為“高三學生的數學成績與學生線上學習時間有關”;
(2)①按照分層抽樣的方法,在上述樣本中從分數不少于120分和分數不足120分的兩組學生中抽取9名學生,設抽到不足120分且每周線上學習時間不足5小時的人數是,求
的分布列(概率用組合數算式表示);
②若將頻率視為概率,從全校高三該次檢測數學成績不少于120分的學生中隨機抽取20人,求這些人中每周線上學習時間不少于5小時的人數的期望和方差.
(下面的臨界值表供參考)
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式其中
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】著名數學家華羅庚先生曾說過:“數缺形時少直觀,形缺數時難入微數形結合百般好,隔裂分家萬事休.”在數學的學習和研究中,我們經常用函數的圖象來研究函數的性質,也經常用函數的解析式來琢磨函數的圖象的特征,如某體育品牌的LOGO為,可抽象為如圖所示的軸對稱的優美曲線,下列函數中,其圖象大致可“完美”局部表達這條曲線的函數是( )
A.B.
C.D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】運用祖暅原理計算球的體積時,夾在兩個平行平面之間的兩個幾何體,被平行于這兩個平面的任意一個平面所截,若截面面積都相等,則這兩個幾何體的體積相等.構造一個底面半徑和高都與球的半徑相等的圓柱,與半球(如圖①)放置在同一平面上,然后在圓柱內挖去一個以圓柱下底面圓心為頂點,圓柱上底面為底面的圓錐后得到一新幾何體(如圖②),用任何一個平行于底面的平面去截它們時,可證得所截得的兩個截面面積相等,由此可證明新幾何體與半球體積相等.現將橢圓繞y軸旋轉一周后得一橄欖狀的幾何體(如圖③),類比上述方法,運用祖暅原理可求得其體積等于( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】日晷是中國古代用來測定時間的儀器,利用與晷面垂直的晷針投射到晷面的影子來測定時間.把地球看成一個球(球心記為O),地球上一點A的緯度是指OA與地球赤道所在平面所成角,點A處的水平面是指過點A且與OA垂直的平面.在點A處放置一個日晷,若晷面與赤道所在平面平行,點A處的緯度為北緯40°,則晷針與點A處的水平面所成角為( )
A.20°B.40°
C.50°D.90°
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在3世紀中期,我國古代數學家劉徽在《九章算術注》中提出了割圓術:“割之彌細,所失彌少,割之又割,以至于不可割,則與圓合體,而無所失矣”.這可視為中國古代極限觀念的佳作.割圓術可以視為將一個圓內接正邊形等分成
個等腰三角形(如圖所示),當
變得很大時,等腰三角形的面積之和近似等于圓的面積.運用割圓術的思想,可得到sin3°的近似值為( )(
取近似值3.14)
A.0.012B.0.052
C.0.125D.0.235
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在三棱錐中,
,
在底面
上的投影為
的中點
,
.有下列結論:
①三棱錐的三條側棱長均相等;
②的取值范圍是
;
③若三棱錐的四個頂點都在球的表面上,則球
的體積為
;
④若,
是線段
上一動點,則
的最小值為
.
其中所有正確結論的編號是( )
A.①②B.②③C.①②④D.①③④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數f(x)=Asin(x+)(A>0,>0,0<<)的部分圖象如圖所示,又函數g(x)=f(x+).
(1)求函數g(x)的單調增區間;
(2)設ABC的內角ABC的對邊分別為abc,又c=
,且銳角C滿足g(C)= -1,若sinB=2sinA,,求ABC的面積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com