【題目】若[x]表示不超過x的最大整數,則[lg2]+[lg3]+…+lg[2017]+[lg ]+[lg
]+…+[lg
]= .
【答案】-2013
【解析】解:當2≤n≤9時,[lgn]=0,
當10≤n≤99時,[lgn]=1,
當100≤n≤999時,[lgn]=2,
當1000≤n≤9999時,[lgn]=3,
故[lg2]+[lg3]+…+[lg2016]+[2017]
=0×8+1×90+2×900+3×1018
=90+1800+3054
=4944;
當 ≤
≤
,[lg
]=﹣1;
當 ≤
≤
時,[lg
]=﹣2;
當 ≤
≤
時,[lg
]=﹣3;
當 ≤
≤
時,[lg
]=﹣4.
則[lg ]+[lg
]+…+[lg
]
=(﹣1)×9+(﹣2)×90+(﹣3)×900+(﹣4)×1017
=﹣6957,
故原式=4944﹣6957=﹣2013.
所以答案是:﹣2013.
【考點精析】認真審題,首先需要了解數列的前n項和(數列{an}的前n項和sn與通項an的關系).
科目:高中數學 來源: 題型:
【題目】若在定義域內存在實數x0使得f(x0+1)=f(x0)+f(1)成立則稱函數f(x)有“溜點x0”
(1)若函數 在(0,1)上有“溜點”,求實數m的取值范圍;
(2)若函數f(x)=lg( )在(0,1)上有“溜點”,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為比較甲,乙兩地某月14時的氣溫,隨機選取該月中的5天,將這5天中14時的氣溫數據(單位:℃)制成如圖所示的莖葉圖,考慮以下結論:
①甲地該月14時的平均氣溫低于乙地該月14時的平均氣溫;
②甲地該月14時的平均氣溫高于乙地該月14時的平均氣溫;
③甲地該月14時的氣溫的標準差小于乙地該月14時的氣溫的標準差;
④甲地該月14時的氣溫的標準差大于乙地該月14時的氣溫的標準差.
其中根據莖葉圖能得到的統計結論的編號為( )
A.①③
B.①④
C.②③
D.②④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖為四棱錐P﹣ABCD的表面展開圖,四邊形ABCD為矩形, ,AD=1.已知頂點P在底面ABCD上的射影為點A,四棱錐的高為
,則在四棱錐P﹣ABCD中,PC與平面ABCD所成角的正切值為 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PA⊥底面ABCD,底面ABCD為直角梯形,AD∥BC,∠BAD=90°,PA=AD=AB=2BC=2,過AD的平面分別交PB,PC于M,N兩點.
(1)求證:MN∥BC;
(2)若M,N分別為PB,PC的中點,
①求證:PB⊥DN;
②求二面角P﹣DN﹣A的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐A﹣BCDE中,底面BCDE為矩形,側面ABC⊥底面BCDE,BC=2,CD= ,AB=AC.
(1)證明:AD⊥CE;
(2)設CE與平面ABE所成的角為45°,求二面角C﹣AD﹣E的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2014年“五一節”期間,高速公路車輛較多,交警部門通過路面監控裝置抽樣調查某一山區路段汽車行駛速度,采用的方法是:按到達監控點先后順序,每隔50輛抽取一輛,總共抽取120輛,分別記下其行車速度,將行車速度(km/h)分成七段[60,65),[65,70),[70,75),[75,80),[80,85),[85,90),[90,95)后得到如圖所示的頻率分布直方圖,據圖解答下列問題:
(1)求a的值,并說明交警部門采用的是什么抽樣方法?
(2)求這120輛車行駛速度的眾數和中位數的估計值(精確到0.1);
(3)若該路段的車速達到或超過90km/h即視為超速行駛,試根據樣本估計該路段車輛超速行駛的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com