【題目】“龜兔賽跑”講述了這樣的故事:領先的兔子看著慢慢爬行的烏龜,驕傲起來,睡了一覺,當它醒來時,發現烏龜快到終點了,于是急忙追趕,但為時已晚,烏龜還是先到達了終點.用,
分別表示烏龜和兔子所行的路程,
為時間,則與故事情節相吻合的是( 。
A.B.
C.
D.
科目:高中數學 來源: 題型:
【題目】已知橢圓M:: (a>0)的一個焦點為F(﹣1,0),左右頂點分別為A,B.經過點F的直線l與橢圓M交于C,D兩點.
(1)求橢圓方程;
(2)當直線l的傾斜角為45°時,求線段CD的長;
(3)記△ABD與△ABC的面積分別為S1和S2 , 求|S1﹣S2|的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,DOAB是邊長為2的正三角形,當一條垂直于底邊OA(垂足不與O,A重合)的直線x=t從左至右移動時,直線l把三角形分成兩部分,記直線l左邊部分的面積y.
(Ⅰ)寫出函數y= f(t)的解析式;
(Ⅱ)寫出函數y= f(t)的定義域和值域.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數滿足如下四個條件:
①定義域為;
②;
③當時,
;
④對任意滿足
.
根據上述條件,求解下列問題:
⑴求及
的值.
⑵應用函數單調性的定義判斷并證明的單調性.
⑶求不等式的解集.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知各項都是正數的數列{an}的前n項和為Sn , Sn=an2+ an , n∈N*
(1)求數列{an}的通項公式;
(2)設數列{bn}滿足:b1=1,bn﹣bn﹣1=2an(n≥2),求數列{ }的前n項和Tn
(3)若Tn≤λ(n+4)對任意n∈N*恒成立,求λ的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,點列{An}、{Bn}分別在銳角兩邊(不在銳角頂點),且|AnAn+1|=|An+1An+2|,An≠An+2 , |BnBn+1|=|Bn+1Bn+2|,Bn≠Bn+1 , n∈N*(P≠Q表示點P與Q不重合),若dn=|AnBn|,Sn為△AnBnBn+1的面積,則( )
A.{dn}是等差數列
B.{Sn}是等差數列
C.{d }是等差數列
D.{S }是等差數列
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】將函數f(x)= sin2x﹣
cos2x+1的圖象向左平移
個單位,再向下平移1個單位,得到函數y=g(x)的圖象,則下列關予函數y=g(x)的說法錯誤的是( )
A.函數y=g(x)的最小正周期為π
B.函數y=g(x)的圖象的一條對稱軸為直線x=
C. g(x)dx=
D.函數y=g(x)在區間[ ,
]上單調遞減
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com