【題目】如圖,四邊形與
均為菱形,
,且
.
(1)求證: 平面
;
(2)求直線與平面
所成角的正弦值.
【答案】(1)見解析;(2).
【解析】試題分析:(1)根據菱形性質得,設
與
相交于點
,由等腰三角形性質得
,再根據線面垂直判定定理得
平面
;(2)先證明
平面
,再建立空間直角坐標系,設立各點坐標,根據方程組解出平面法向量。利用向量數量積求出向量夾角,最后根據向量夾角與線面角互余關系確定直線
與平面
所成角的正弦值.
試題解析:(1)設與
相交于點
,連接
,
∵四邊形為菱形,∴
,且
為
中點,
∵,∴
,
又,∴
平面
.
(2)連接,∵四邊形
為菱形,且
,∴
為等邊三角形,
∵為
中點,∴
,又
,∴
平面
.
∵兩兩垂直,∴建立空間直角坐標系
,如圖所示,
設,∵四邊形
為菱形,
,∴
.
∵為等邊三角形,∴
.
∴,
∴.
設平面的法向量為
,則
,
取,得
.
設直線與平面
所成角為
,
則.
科目:高中數學 來源: 題型:
【題目】已知向量 =(2,﹣3),
=(﹣5,4),
=(1﹣λ,3λ+2).
(1)若△ABC為直角三角形,且∠B為直角,求實數λ的值;
(2)若點A、B、C能構成三角形,求實數λ應滿足的條件.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,網格紙上小正方形的邊長為1,粗線畫出的是某個四面體的三視圖,則該四面體的表面積為( )
A.8+8 +4
B.8+8 +2
C.2+2 +
D. +
+
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在平面直角坐標系中,直線經過點
,傾斜角為
.在以原點為極點,
軸正半軸為極軸的極坐標系中,曲線
的方程為
.
(1)寫出直線的參數方程和曲線
的直角坐標方程;
(2)設直線與曲線
相交于
兩點,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,
(其中
,
),且函數
的圖象在點
處的切線與函數
的圖象在點
處的切線重合.
(1)求實數,
的值;
(2)記函數,是否存在最小的正常數
,使得當
時,對于任意正實數
,不等式
恒成立?給出你的結論,并說明結論的合理性.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}的前n項和Sn=n2﹣n,數列{bn}的前n項和Tn=4﹣bn .
(1)求數列{an}和{bn}的通項公式;
(2)設cn= anbn , 求數列{cn}的前n項和Rn的表達式.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com