【題目】已知圓C:x2+y2+2x-4y+3=0.
(1)若圓C的切線在x軸和y軸上的截距相等,求此切線的方程.
①當切線在兩坐標軸上的截距為零時,設切線方程為y=kx,
則 ,解得k=2±
,
從而切線方程為y=(2± )x.
②當切線在兩坐標軸上的截距不為零時,設切線方程為x+y-a=0,則 ,解得a=-1或3,
從而切線方程為x+y+1=0或x+y-3=0.
綜上,切線方程為(2+ )x-y=0或(2-
)x-y=0或x+y+1=0或x+y-3=0
(2)點P在直線l:2x-4y+3=0上,過點P作圓C的切線,切點記為M,求使|PM|最小的點P的坐標.
【答案】
(1)解:將圓C的方程整理,得(x+1)2+(y-2)2=2
(2)解:因為圓心C(-1,2)到直線l的距離d= ,所以直線l與圓C相離.
當|PM|取最小值時,|CP|取得最小值,此時CP垂直于直線l.
所以直線CP的方程為2x+y=0.
解方程組 得點P的坐標為(-
,
)
【解析】(1)通過將圓C的方程整理,可以得到圓的方程。
(2)由題意可得圓心到直線的距離小于半徑,所以直線與圓C相離,所以當|PM|取最小值時,|CP|取得最小值,此時CP垂直于直線l.,所以可以得到直線CP的方程,列出等式解出,可以得到點P的坐標。
【考點精析】解答此題的關鍵在于理解圓的標準方程的相關知識,掌握圓的標準方程:;圓心為A(a,b),半徑為r的圓的方程.
科目:高中數學 來源: 題型:
【題目】已知定義在R上函數f(x)是可導的,f(1)=2,且f(x)+f'(x)<1,則不等式f(x)﹣1<e1﹣x的解集是( )(注:e為自然對數的底數)
A.(1,+∞)
B.(﹣∞,0)∪(0,1)
C.(0,1)
D.(﹣∞,1)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設命題p:實數x滿足|x﹣1|>a其中a>0;命題q:實數x滿足 <1
(1)若命題p中a=1,且p∧q為真,求實數x的取值范圍;
(2)若¬p是q的必要不充分條件,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=ex﹣x,h(x)=﹣kx3+kx2﹣x+1.
(1)求f(x)的最小值;
(2)設h(x)≤f(x)對任意x∈[0,1]恒成立時k的最大值為λ,證明:4<λ<6.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓C:x2+y2=4,直線l:y+x﹣t=0,P為直線l上一動點,O為坐標原點.
(1)若直線l交圓C于A、B兩點,且∠AOB= ,求實數t的值;
(2)若t=4,過點P做圓的切線,切點為T,求
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系內,已知 是圓
上一點,折疊該圓兩次使點
分別與圓上不相同的兩點(異于點
)重合,兩次的折痕方程分別為
和
,若圓
上存在點
,使
,其中
的坐標分別為
,則實數
的取值集合為 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com