【題目】甲題型:給出如圖數陣表格形式,表格內是按某種規律排列成的有限個正整數.
(1)記第一行的自左至右構成數列,
是
的前
項和,試求;
(2)記為第
列第
行交點的數字,觀察數陣請寫出
表達式,若
,試求出
的值.
科目:高中數學 來源: 題型:
【題目】函數fn(x)=xn+bx+c(n∈Z,b,c∈R).
(1)若n=﹣1,且f﹣1(1)=f﹣1()=5,試求實數b,c的值;
(2)設n=2,若對任意x1,x2∈[﹣1,1]有|f2(x1)﹣f2(x2)|≤6恒成立,求b的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點A(0,-2),橢圓E: (a>b>0)的離心率為
,F是橢圓E的右焦點,直線AF的斜率為
,O為坐標原點.
(1)求E的方程;
(2)設過點A的動直線l與E相交于P,Q兩點.當△OPQ的面積最大時,求l的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點是拋物線
的對稱軸與準線的交點,點
為拋物線的焦點,
在拋物線上且滿足
,當
取最大值時,點
恰好在以
,
為焦點的雙曲線上,則雙曲線的離心率為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】新型冠狀病毒肺炎疫情爆發以來,疫情防控牽掛著所有人的心. 某市積極響應上級部門的號召,通過沿街電子屏、微信公眾號等各種渠道對此戰“疫”進行了持續、深入的懸窗,幫助全體市民深入了解新冠狀病毒,增強戰勝疫情的信心. 為了檢驗大家對新冠狀病毒及防控知識的了解程度,該市推出了相關的知識問卷,隨機抽取了年齡在15~75歲之間的200人進行調查,并按年齡繪制頻率分布直方圖如圖所示,把年齡落在區間和
內的人分別稱為“青少年人”和“中老年人”. 經統計“青少年人”和“中老年人”的人數比為19:21. 其中“青少年人”中有40人對防控的相關知識了解全面,“中老年人”中對防控的相關知識了解全面和不夠全面的人數之比是2:1.
(1)求圖中的值;
(2)現采取分層抽樣在和
中隨機抽取8名市民,從8人中任選2人,求2人中至少有1人是“中老年人”的概率是多少?
(3)根據已知條件,完成下面的2×2列聯表,并根據統計結果判斷:能夠有99.9%的把握認為“中老年人”比“青少年人”更加了解防控的相關知識?
了解全面 | 了解不全面 | 合計 | |
青少年人 | |||
中老年人 | |||
合計 |
附表及公式:,其中
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數.
(1)當時,求函數
的最大值;
(2)令,
其圖象上任意一點
處切線的斜率
恒成立,求實數
的取值范圍;
(3)當,
,方程
有唯一實數解,求正數
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】雙曲線的左、右焦點分別是
,拋物線
的焦點與點
重合,點
是拋物線與雙曲線的一個交點,如圖所示.
(1)求雙曲線及拋物線的標準方程;
(2)設直線與雙曲線的過一、三象限的漸近線平行,且交拋物線于
兩點,交雙曲線于點
,若點
是線段
的中點,求直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系xOy中,曲線C1: (t為參數,t≠0),其中0≤α<π.在以O為極點,x軸正半軸為極軸的極坐標系中,曲線C2:ρ=2sin θ,C3:ρ=2
cos θ.
(1)求C2與C3交點的直角坐標;
(2)若C1與C2相交于點A,C1與C3相交于點B,求|AB|的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com