精英家教網 > 高中數學 > 題目詳情

【題目】設函數.

(1)當時,求函數的最大值;

(2)令,其圖象上任意一點處切線的斜率恒成立,求實數的取值范圍;

(3)當,,方程有唯一實數解,求正數的值.

【答案】(1)(2) (3)

【解析】

(1)利用導數求函數的單調區間即得函數的最大值.(2)由題得,.再求右邊二次函數的最大值即得.(3)轉化為有唯一實數解,設,再研究函數在定義域內有唯一的零點得解.

(1)依題意,知的定義域為,

時,

,

,解得.(∵)

因為 有唯一解,所以,當時,,此時單調遞增;

時,,此時單調遞減,

所以的極大值為,此即為最大值.

(2),,則有,在上恒成立,

所以,.

時,取得最大值,所以.

(3)因為方程有唯一實數解,

所以有唯一實數解,

,

,令,,

因為,,所以(舍去),

時,上單調遞減;

時,,上單調遞增;

時,取最小值.

,即,

所以,因為,所以(*)

設函數,因為當時,

是增函數,所以至多有一解,

因為,所以方程(*)的解為,即,解得.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知數列的前項和為,正項等比數列中, ,,則( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

1)證明:上單調遞減,在上單調遞增;

2)記函數的最小值為,求的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】甲題型:給出如圖數陣表格形式,表格內是按某種規律排列成的有限個正整數.

(1)記第一行的自左至右構成數列,的前項和,試求;

(2)記為第列第行交點的數字,觀察數陣請寫出表達式,若,試求出的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在以下命題中:

①三個非零向量,,不能構成空間的一個基底,則,共面;

②若兩個非零向量,與任何一個向量都不能構成空間的一個基底,則,共線;

③對空間任意一點和不共線的三點,,若,則,,四點共面

④若,是兩個不共線的向量,且,則構成空間的一個基底

⑤若為空間的一個基底,則構成空間的另一個基底;

其中真命題的個數是(

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某中學舉行了一次數學基礎知識競賽活動.為了了解本次競賽學生的成績情況,從中抽取了部分學生的分數(得分取正整數,滿分為100分)作為樣本(樣本容量為)進行統計.按照的分組作出頻率分布直方圖,并作出樣本分數的莖葉圖(圖中僅列出了得分在的數據).

1)求樣本容量和頻率分布直方圖中的,的值;

2)在選取的樣本中,從競賽成績在80分以上(含80分)的學生中隨機抽取2名學生參加市級數學基礎知識競賽,求所抽取的2名學生中恰有一人得分在內的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若某產品的直徑長與標準值的差的絕對值不超過時,則視為合格品,否則視為不合格品.在近期一次產品抽樣檢查中,從某廠生產的此種產品中,隨機抽取5000件進行檢測,結果發現有50件不合格品.計算這50件不合格品的直徑長與標準值的差(單位:)將所得數據分組,得到如下頻率分布表:

1)將上面表格中缺少的數據填充完整;

2)估計該廠生產的此種產品中,不合格的直徑長與標準值的差落在區間內的概率

3)現對該廠這種產品的某個批次進行檢查,結果發現有20件不合格品,據此估算這批產品中的合格品的件數.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知集合A={x|1<x<3},集合B={x|2m<x<1-m}.

(1)當m=-1時,求AB;

(2)若AB,求實數m的取值范圍;

(3)若AB,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】現有一個關于平面圖形的命題:如圖所示,同一平面內有兩個邊長都是a的正方形,其中一個正方形的某頂點在另一個正方形的中心,則這兩個正方形重疊部分的面積恒為,類比到空間,有兩個棱長均為a的正方體,其中一個的某頂點在另一個的中心,則這兩個正方體重疊部分的體積恒為__________.

A.B.C.D.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视