【題目】從2017年1月18日開始,支付寶用戶可以通過“掃‘福’字”和“參與螞蟻森林”兩種方式獲得福卡(愛國福、富強福、和諧福、友善福、敬業福),除夕夜22:18,每一位提前集齊五福的用戶都將獲得一份現金紅包.某高校一個社團在年后開學后隨機調查了80位該校在讀大學生,就除夕夜22:18之前是否集齊五福進行了一次調查(若未參與集五福的活動,則也等同于未集齊五福),得到具體數據如下表:
是否集齊五福 性別 | 是 | 否 | 合計 |
男 | 30 | 10 | 40 |
女 | 35 | 5 | 40 |
合計 | 65 | 15 | 80 |
(1)根據如上的列聯表,能否在犯錯誤的概率不超過0.05的前提下,認為“集齊五福與性別有關”?
(2)計算這80位大學生集齊五福的頻率,并據此估算該校10000名在讀大學生中集齊五福的人數;
(3)為了解集齊五福的大學生明年是否愿意繼續參加集五;顒,該大學的學生會從集齊五福的學生中,選取2位男生和3位女生逐個進行采訪,最后再隨機選取3次采訪記錄放到該大學的官方網站上,求最后被選取的3次采訪對象中至少有一位男生的概率.
【答案】(1)見解析;(2)8125;(3) .
【解析】試題分析:(1) 由表中可知,a,b,c,d,n,代入卡方公式可求得,可得結論。(2)由樣本頻率估計概率,可知P=
,所以集齊人數為n=
.(3) 由由枚舉法與古典概型可求。
試題解析;(1)根據列聯表中的數據,得到的觀測值為
,
故不能在犯錯誤的概率不超過0.05的前提下,認為“集齊五福與性別有關”.
(2)這80位大學生集齊五福的頻率為.
據此估算該校10000名在讀大學生中集齊五福的人數為.
(3)設選取的2位男生和3位女生分別記為,
,
,
,
,隨機選取3次采訪的所有結果為
,
,
,
,
,
,
,
,
,
共有10個基本事件,至少有一位男生的基本事件有9個,
故所求概率為.
科目:高中數學 來源: 題型:
【題目】已知y=f(x)是偶函數,定義x≥0時,f(x)=
(1)求f(-2);
(2)當x<-3時,求f(x)的解析式;
(3)設函數y=f(x)在區間[-5,5]上的最大值為g(a),試求g(a)的表達式.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系xOy中,以坐標原點為極點,x軸正半軸為極軸建立極坐標系,半圓C的極坐標方程為ρ=2cosθ,θ∈[0, ]
(1)求C的參數方程;
(2)設點D在半圓C上,半圓C在D處的切線與直線l:y= x+2垂直,根據(1)中你得到的參數方程,求直線CD的傾斜角及D的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=x2+(2a+1)x+a2+3a(a∈R).
(Ⅰ)若函數f(x)在[0,2]上單調,求a的取值范圍;
(Ⅱ)若f(x)在閉區間[m,n]上單調遞增(其中m≠n),且{y|y=f(x),m≤x≤n}=[m,n],求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校高一年級某次數學競賽隨機抽取100名學生的成績,分組為[50,60),[60,70),[70,80),[80,90),[90,100],統計后得到頻率分布直方圖如圖所示:
(1)試估計這組樣本數據的眾數和中位數(結果精確到0.1);
(2)年級決定在成績[70,100]中用分層抽樣抽取6人組成一個調研小組,對高一年級學生課外學習數學的情況做一個調查,則在[70,80),[80,90),[90,100]這三組分別抽取了多少人?
(3)現在要從(2)中抽取的6人中選出正副2個小組長,求成績在[80,90)中至少有1人當選為正、副小組長的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一個函數f(x),如果對任意一個三角形,只要它的三邊長a,b,c都在f(x)的定義域內,就有f(a),f(b),f(c)也是某個三角形的三邊長,則稱f(x)為“保三角形函數”.
(1)判斷f1(x)=x,f2(x)=log2(6+2sinx-cos2x)中,哪些是“保三角形函數”,哪些不是,并說明理由;
(2)若函數g(x)=lnx(x∈[M,+∞))是“保三角形函數”,求M的最小值;
(3)若函數h(x)=sinx(x∈(0,A))是“保三角形函數”,求A的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com