【題目】已知橢圓的離心率為
,橢圓
與
軸交于
兩點,且
.
(1)求橢圓的方程;
(2)設點是橢圓
上的一個動點,且直線
與直線
分別交于
兩點.是否存在點
使得以
為直徑的圓經過點
?若存在,求出點
的橫坐標;若不存在,說明理由.
【答案】(1);(2)點
不存在.
【解析】分析:(1)根據橢圓的幾何性質知,即
,再由離心率得
,從而可得
,得橢圓方程;
(2)假設點P存在,并設,寫出PA的方程,求出M點坐標,同理得N點坐標,求出MN的中點坐標,即圓心坐標,利用圓過點D得一關于
的等式,把P點坐標代入橢圓方程后也剛才的等式聯立解得
,注意
的范圍,即可知存在不存在.
詳解:(1)由已知,得知
,
又因為離心率為,所以
.
因為,所以
,
所以橢圓的標準方程為
.
(2)假設存在.
設
由已知可得,
所以的直線方程為
,
的直線方程為
,
令,分別可得
,
,
所以,
線段的中點
,
若以為直徑的圓經過點D(2,0),
則,
因為點在橢圓上,所以
,代入化簡得
,
所以, 而
,矛盾,
所以這樣的點不存在.
科目:高中數學 來源: 題型:
【題目】雙曲線
的左、右焦點分別為
,過
作傾斜角為
的直線與
軸和雙曲線的右支分別交于
兩點,若點
平分線段
,則該雙曲線的離心率是( )
A. B.
C. 2 D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一個工廠在某年連續10個月每月產品的總成本y(萬元)與該月產量x(萬件)之間有如下一組數據:
x | 1.08 | 1.12 | 1.19 | 1.28 | 1.36 | 1.48 | 1.59 | 1.68 | 1.80 | 1.87 |
y | 2.25 | 2.37 | 2.40 | 2.55 | 2.64 | 2.75 | 2.92 | 3.03 | 3.14 | 3.26 |
(1)通過畫散點圖,發現可用線性回歸模型擬合y與x的關系,請用相關系數加以說明;
(2)①建立月總成本y與月產量x之間的回歸方程;
②通過建立的y關于x的回歸方程,估計某月產量為1.98萬件時,此時產品的總成本為多少萬元?
(均精確到0.001)
附注:①參考數據:,
,
②參考公式:相關系數,
回歸方程中斜率和截距的最小二乘估計公式分別為:
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】武漢市攝影協會準備在2020年1月舉辦主題為“我們都是追夢人”攝影圖片展,通過平常人的鏡頭記錄國強民富的幸福生活,攝影協會收到了來自社會各界的大量作品,打算從眾多照片中選取100張照片展出,其參賽者年齡集中在之間,根據統計結果,做出頻率分布直方圖如圖:
(1)求頻率直方圖中的值,并根據頻率直方圖,求這100位攝影者年齡的中位數;
(2)為了展示不同年齡作者眼中的幸福生活,攝影協會按照分層抽樣的方法,計劃從這100件照片中抽出20個最佳作品,并邀請相應作者參加“講述照片背后的故事”座談會.
①在答題卡上的統計表中填出每組相應抽取的人數:
年齡 | |||||
人數 |
②若從年齡在的作者中選出2人把這些圖片和故事整理成冊,求這2人中至少有1人的年齡在
的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】蘋果是人們日常生活中常見的營養型水果.某地水果批發市場銷售來自5個不同產地的富士蘋果,各產地的包裝規格相同,它們的批發價格(元/箱)和市場份額如下:
產地 | |||||
批發價格 | |||||
市場份額 |
市場份額亦稱“市場占有率”.指某一產品的銷售量在市場同類產品中所占比重.
(1)從該地批發市場銷售的富士蘋果中隨機抽取一箱,求該箱蘋果價格低于元的概率;
(2)按市場份額進行分層抽樣,隨機抽取箱富士蘋果進行檢驗,
①從產地共抽取
箱,求
的值;
②從這箱蘋果中隨機抽取兩箱進行等級檢驗,求兩箱產地不同的概率;
(3)由于受種植規模和蘋果品質的影響,預計明年產地的市場份額將增加
,產地
的市場份額將減少
,其它產地的市場份額不變,蘋果銷售價格也不變(不考慮其它因素).設今年蘋果的平均批發價為每箱
元,明年蘋果的平均批發價為每箱
元,比較
的大小.(只需寫出結論)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}滿足:a1+a2+a3+…+an=n-an,(n=1,2,3,…)
(Ⅰ)求證:數列{an-1}是等比數列;
(Ⅱ)令bn=(2-n)(an-1)(n=1,2,3,…),如果對任意n∈N*,都有bn+t≤t2,求實數t的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】每年圣誕節,各地的餐館都出現了用餐需預定的現象,致使--些人在沒有預定的情況下難以找到用餐的餐館,針對這種現象,專家對人們“用餐地點"以及“性別”作出調查,得到的情況如下表所示:
在家用餐 | 在餐館用餐 | 總計 | |
女性 | |||
男性 | |||
總計 |
(1)完成上述列聯表;
(2)根據表中的數據,試通過計算判斷是否有的把握說明“用餐地點”與“性別"有關;
(3)若在接受調查的所有人男性中按照“用餐地點”進行分層抽樣,隨機抽取人,再在
人中抽取
人贈送餐館用餐券,記收到餐館用餐券的男性中在餐館用餐的人數為
,求
的分布列和數學期望.
附:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,直角梯形中,
,
,
,四邊形
為矩形,
.
(1)求證:平面平面
;
(2)在線段上是否存在點
,使得直線
與平面
所成角的正弦值為
,若存在,求出線段
的長,若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com