【題目】函數f(x)= 的定義域為( )
A.( ,9)
B.[ ,9]
C.(0, ]∪[9,+∞)
D.(0, )∪(9,+∞)
科目:高中數學 來源: 題型:
【題目】2016年上半年,股票投資人袁先生同時投資了甲、乙兩只股票,其中甲股票賺錢的概率為 ,賠錢的概率是
;乙股票賺錢的概率為
,賠錢的概率為
.對于甲股票,若賺錢則會賺取5萬元,若賠錢則損失4萬元;對于乙股票,若賺錢則會賺取6萬元,若賠錢則損失5萬元. (Ⅰ)求袁先生2016年上半年同時投資甲、乙兩只股票賺錢的概率;
(Ⅱ)試求袁先生2016年上半年同事投資甲、乙兩只股票的總收益的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)的定義域為D,若對于a,b,c∈D,f(a),f(b),f(c)分別為某個三角形的邊長,則稱f(x)為“三角形函數”.給出下列四個函數: ①f(x)=lnx(e2≤x≤e3);②f(x)=4﹣cosx;③ ;④
.
其中為“三角形函數”的個數是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x2+alnx﹣x(a≠0),g(x)=x2 . (Ⅰ)求函數f(x)的單調區間;
(Ⅱ)若對于任意的a∈(1,+∞),總存在x1 , x2∈[1,a],使得f(x1)﹣f(x2)>g(x1)﹣g(x2)+m成立,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=lnx﹣ax+ ,且f(x)+f(
)=0,其中a,b為常數.
(1)若函數f(x)的圖象在x=1的切線經過點(2,5),求函數的解析式;
(2)已知0<a<1,求證:f( )>0;
(3)當f(x)存在三個不同的零點時,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=e2x﹣ax2+bx﹣1,其中a,b∈R,e為自然對數的底數,若f(1)=0,f′(x)是f(x)的導函數,函數f′(x)在區間(0,1)內有兩個零點,則a的取值范圍是( )
A.(e2﹣3,e2+1)
B.(e2﹣3,+∞)
C.(﹣∞,2e2+2)
D.(2e2﹣6,2e2+2)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x2﹣alnx(a>0)的最小值是1.
(Ⅰ)求a;
(Ⅱ)若關于x的方程f2(x)ex﹣6mf(x)+9me﹣x=0在區間[1,+∞)有唯一的實根,求m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}中,a1=2,a2=4,設Sn為數列{an}的前n項和,對于任意的n>1,n∈N* , Sn+1+Sn﹣1=2(Sn+1).
(1)求數列{an}的通項公式;
(2)設bn= ,求{bn}的前n項和Tn .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com