精英家教網 > 高中數學 > 題目詳情

【題目】已知函數f(x)4cosωx·sin(ωx)(ω>0)的最小正周期為π

(1)ω的值;

(2)討論f(x)在區間[0,]上的單調性.

【答案】1ω1

2f(x)在區間[0,]上單調遞增,在區間[,]上單調遞減.

【解析】解:(1)f(x)4cosωx·sin(ωx)

2sinωx·cosωx2cos2ωx

(sin2ωxcos2ωx)

2sin(2ωx)

∵f(x)的最小正周期為π,且ω>0,

從而有π,故ω1

(2)(1)f(x)2sin(2x)

0≤x≤,則≤2x

≤2x,即0≤x≤時,f(x)單調遞增;

≤2x,即≤x≤時,f(x)單調遞減.

綜上可知,f(x)在區間[0,]上單調遞增,在區間[]上單調遞減.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)函數,,求函數的最小值;

(2)對任意,都有成立,求的范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】橢圓=1(a>b>0)的左右焦點分別為F1(-c,0)、F2(c,0),過橢圓中心的弦PQ滿足丨PQ丨=2,∠PF2Q=90°,且△PF2Q的面積為1.

(1)求橢圓的方程;

(2)直線l不經過點A(0,1),且與橢圓交于M,N兩點,若以MN為直徑的圓經過點A,求證:直線l過定點,并求出該定點的坐標。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數 ,a為正常數.
(1)若f(x)=lnx+φ(x),且a= ,求函數f(x)的單調增區間;
(2)在(1)中當a=0時,函數y=f(x)的圖象上任意不同的兩點A(x1 , y1),B(x2 , y2),線段AB的中點為C(x0 , y0),記直線AB的斜率為k,試證明:k>f'(x0).
(3)若g(x)=|lnx|+φ(x),且對任意的x1 , x2∈(0,2],x1≠x2 , 都有 ,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,該幾何體是由一個直三棱柱和一個正四棱錐組合而成,.

(1)證明:平面平面;

(2)求正四棱錐的高,使得該四棱錐的體積是三棱錐體積的4倍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)= ,數列{an}滿足a1=1,an+1=f( ),n∈N*
(1)求數列{an}的通項公式;
(2)令bn= (n≥2),b1=3,Sn=b1+b2++bn , 若Sn 對一切n∈N*成立,求最小正整數m.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=cos2 + sinωx﹣ (ω>0),x∈R,若f(x)在區間(π,2π)內沒有零點,則ω的取值范圍是(
A.(0, ]
B.(0, ]∪[ ,
C.(0, ]
D.(0, ]∪[ ]

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某校為了解校園安全教育系列活動的成效,對全校學生進行了一次安全意識測試,根據測試成績評定“合格”、“不合格”兩個等級,同時對相應等級進行量化:“合格”記5分,“不合格”記0分.現隨機抽取部分學生的答卷,統計結果及對應的頻率分布直方圖如圖所示:

等級

不合格

合格

得分

頻數

6

24

(Ⅰ)求 , 的值;

(Ⅱ)用分層抽樣的方法,從評定等級為“合格”和“不合格”的學生中隨機抽取10人進行座談.現再從這10人這任選4人,記所選4人的量化總分為,求的分布列及數學期望;

(Ⅲ)某評估機構以指標,其中表示的方差)來評估該校安全教育活動的成效.若,則認定教育活動是有效的;否則認定教育活動無效,應調整安全教育方案.在(Ⅱ)的條件下,判斷該校是否應調整安全教育方案?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

(Ⅰ)若,求曲線在點處的切線方程;

(Ⅱ)若, 恒成立,求實數的取值范圍;

(Ⅲ)當時,討論函數的單調性.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视