【題目】在△ABC中,a,b,c分別是角A,B,C的對邊,且8sin2 .
(1)求角A的大;
(2)若a= ,b+c=3,求b和c的值.
科目:高中數學 來源: 題型:
【題目】設 ,曲線y=f(x)在點(1,f(1))處的切線與直線x+y+1=0垂直.
(1)求a的值;
(2)若對于任意的x∈[1,+∞),f(x)≤m(x﹣1)恒成立,求m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在某單位的職工食堂中,食堂每天以3元/個的價格從面包店購進面包,然后以5元/個的價格出售.如果當天賣不完,剩下的面包以1元/個的價格賣給飼料加工廠.根據以往統計資料,得到食堂每天面包需求量的頻率分布直方圖如下圖所示.食堂某天購進了90個面包,以x(單位:個,60≤x≤110)表示面包的需求量,T(單位:元)表示利潤.
(Ⅰ)求T關于x的函數解析式;
(Ⅱ)根據直方圖估計利潤T不少于100元的概率;
(Ⅲ)在直方圖的需求量分組中,以各組的區間中點值代表該組的各個值,并以需求量落入該區間的頻率作為需求量取該區間中間值的概率(例如:若需求量x∈[60,70),則取x=65,且x=65的概率等于需求量落入[60,70)的頻率),求T的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如果對一切實數x、y,不等式 ﹣cos2x≥asinx﹣
恒成立,則實數a的取值范圍是( )
A.(﹣∞, ]
B.[3,+∞)
C.[﹣2 ,2
]
D.[﹣3,3]
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某地要建造一個邊長為2(單位:km)的正方形市民休閑公園OABC,將其中的區域ODC開挖成一個池塘,如圖建立平面直角坐標系后,點D的坐標為(1,2),曲線OD是函數y=ax2圖象的一部分,對邊OA上一點M在區域OABD內作一次函數y=kx+b(k>0)的圖象,與線段DB交于點N(點N不與點D重合),且線段MN與曲線OD有且只有一個公共點P,四邊形MABN為綠化風景區:
(1)求證:b=﹣ ;
(2)設點P的橫坐標為t,①用t表示M、N兩點坐標;②將四邊形MABN的面積S表示成關于t的函數S=S(t),并求S的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】將函數f(x)=cos(ωx+φ)(ω>0,﹣ <φ<
)圖象上每一點的橫坐標伸長為原來的2倍(縱坐標不變),再向右平移
個單位長度得到y=cosx的圖象,則函數f(x)的單調遞增區間為( )
A.[kπ﹣ ,kπ+
](k∈Z)
B.[kπ﹣ ,kπ﹣
](k∈Z)
C.[4kπ﹣ ,kπ﹣
](k∈Z)
D.[4kπ﹣ ,kπ+
](k∈Z)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知曲線C1的參數方程為 (t為參數).以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C2的極坐標方程為ρ=2cosθ.
(Ⅰ)把C1的參數方程化為極坐標方程;
(Ⅱ)求C1與C2交點的極坐標(ρ≥0,0≤θ<2π).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知定義在R上的奇函數f(x)和偶函數g(x)滿足f(x)=2g(x)+ ,若f(
)+f(cos2θ)<f(π)﹣f(
),則θ的取值范圍是( )
A.(2kπ+ ,2kπ+
),k∈Z
B.(2kπ﹣ ,2kπ)∪(2kπ,2kπ+π)∪(2kπ+π,2kπ+
π),k∈Z
C.(2kπ﹣ ,2kπ﹣
),k∈Z
D.(2kπ﹣ ,2kπ﹣π)∪(2kπ﹣π,2kπ)∪(2kπ,2kπ+
),k∈Z
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)的導函數f′(x),滿足(x﹣2)[f′(x)﹣f(x)]>0,且f(4﹣x)=e4﹣2xf(x),則下列關于 f(x)的命題正確的是( )
A.f(3)>e2f(1)
B.f(3)<ef(2)
C.f(4)<e4f(0)
D.f(4)<e5f(﹣1)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com