精英家教網 > 高中數學 > 題目詳情

【題目】某地要建造一個邊長為2(單位:km)的正方形市民休閑公園OABC,將其中的區域ODC開挖成一個池塘,如圖建立平面直角坐標系后,點D的坐標為(1,2),曲線OD是函數y=ax2圖象的一部分,對邊OA上一點M在區域OABD內作一次函數y=kx+b(k>0)的圖象,與線段DB交于點N(點N不與點D重合),且線段MN與曲線OD有且只有一個公共點P,四邊形MABN為綠化風景區:
(1)求證:b=﹣ ;
(2)設點P的橫坐標為t,①用t表示M、N兩點坐標;②將四邊形MABN的面積S表示成關于t的函數S=S(t),并求S的最大值.

【答案】
(1)證明:函數y=ax2過點D(1,2),

代入計算得a=2,

∴y=2x2;

,消去y得2x2﹣kx﹣b=0,

由線段MN與曲線OD有且只有一個公共點P,

得△=(﹣k)2﹣4×2×b=0,

解得b=﹣


(2)解:設點P的橫坐標為t,則P(t,2t2);

①直線MN的方程為y=kx+b,

即y=kx﹣ 過點P,

∴kt﹣ =2t2

解得k=4t;

y=4tx﹣2t2

令y=0,解得x= ,∴M( ,0);

令y=2,解得x= + ,∴N( + ,2);

②將四邊形MABN的面積S表示成關于t的函數為

S=S(t)=2×2﹣ ×2×[ +( + )]=4﹣(t+ );

由t+ ≥2 = ,當且僅當t= ,即t= 時“=”成立,

所以S≤4﹣2 ;即S的最大值是4﹣


【解析】(1)根據函數y=ax2過點D,求出解析式y=2x2;由 ,消去y得△=0即可證明b=﹣ ;(2)寫出點P的坐標(t,2t2),代入①直線MN的方程,用t表示出直線方程為y=4tx﹣2t2 , 令y=0,求出M的坐標;令y=2求出N的坐標; ②將四邊形MABN的面積S表示成關于t的函數S(t),利用基本不等式求出S的最大值.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】設公差不為0的等差數列{an}的前n項和為Sn , 若a2 , a5 , a11成等比數列,且a11=2(Sm﹣Sn)(m>n>0,m,n∈N*),則m+n的值是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在△ABC中, ,其面積為 ,則tan2Asin2B的最大值是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系xoy中,已知點P(0, ),曲線C的參數方程為 (φ為參數).以原點為極點,x軸正半軸為極軸建立極坐標系,直線l的極坐標方程為ρ=
(Ⅰ)判斷點P與直線l的位置關系并說明理由;
(Ⅱ)設直線l與曲線C的兩個交點分別為A,B,求 的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設向量 =(1,﹣2), =(a,﹣1), =(﹣b,0),其中O為坐標原點,a>0,b>0,若A、B、C三點共線,則 的最小值為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在△ABC中,a,b,c分別是角A,B,C的對邊,且8sin2
(1)求角A的大;
(2)若a= ,b+c=3,求b和c的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某市為了制定合理的節電方案,供電局對居民用電進行了調查,通過抽樣,獲得了某年200戶居民每戶的月均用電量(單位:度),將數據按照[0,100),[100,200),[200,300),[300,400),[400,500),[500,600),[600,700),[700,800),[800,900]分成9組,制成了如圖所示的頻率分布直方圖.
(Ⅰ)求直方圖中m的值并估計居民月均用電量的中位數;
(Ⅱ)從樣本里月均用電量不低于700度的用戶中隨機抽取4戶,用X表示月均用電量不低于800度的用戶數,求隨機變量X的分布列及數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知直線l的參數方程為 (t為參數),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,圓C的極坐標方程為
(Ⅰ)求圓C的直角坐標方程;
(Ⅱ)設點為P(x,y)為直線l與圓C所截得的弦上的動點,求 的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線的方程為C:x2=4y,過點Q(0,2)的一條直線與拋物線C交于A,B兩點,若拋物線在A,B兩點的切線交于點P.
(1)求點P的軌跡方程;
(2)設直線PQ與直線AB的夾角為α,求α的取值范圍.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视