精英家教網 > 高中數學 > 題目詳情

【題目】設公差不為0的等差數列{an}的前n項和為Sn , 若a2 , a5 , a11成等比數列,且a11=2(Sm﹣Sn)(m>n>0,m,n∈N*),則m+n的值是

【答案】9
【解析】解:設公差d不為0的等差數列{an}, a2 , a5 , a11成等比數列,
可得a52=a2a11
即為(a1+4d)2=(a1+d)(a1+10d),
化簡可得a1=2d,
a11=2(Sm﹣Sn),
即有12d=2[ma1+ d﹣na1 d],
12d=4md﹣4nd+d(m2﹣m﹣n2+n),
即有(m﹣n)(m+n+3)=12,
由于m>n>0,m,n∈N*,
可得m+n+3≥6,m﹣n≤2,
若m=2,3,n=1則方程不成立;
若m=3,4,n=2,則方程不成立;
若m=4,5,n=3,則方程不成立;
若m=5,n=4,則方程成立;
m=6,n=4則方程不成立.
故m+n=5+4=9.
故答案為:9.
設公差d不為0的等差數列{an},運用等比數列中項的性質,化簡可得a1=2d,再由等差數列的求和公式,化簡可得(m﹣n)(m+n+3)=12,通過m>n,且m,n為自然數,列舉判斷即可得到所求和.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】我國古代有著輝煌的數學研究成果.《周髀算經》、《九章算術》、《海島算經》、《孫子算經》、…、《輯古算經》等算經十書,有著十分豐富多彩的內容,是了解我國古代數學的重要文獻.這10部專著中有7部產生于魏晉南北朝時期.某中學擬從這10部名著中選擇2部作為“數學文化”校本課程學習內容,則所選2部名著中至少有一部是魏晉南北朝時期的名著的概率為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在△ABC中,角A、B、C的對邊分別為a、b、c,a2=b2+c2+bc. (Ⅰ)求角A的大;
(Ⅱ)若a=2 ,b=2,求c的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=4sinxcos2 + )﹣cos2x.
(1)將函數y=f(2x)的圖象向右平移 個單位長度得到函數y=g(x)的圖象,求函數g(x)在x∈[ , ]上的值域;
(2)已知a,b,c分別為△ABC中角A,B,C的對邊,且滿足b=2,f(A)= a=2bsinA,B∈(0, ),求△ABC的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知m、n是兩條不同的直線,α、β是兩個不同的平面,給出下列命題: ①若α⊥β,m∥α,則m⊥β;
②若m⊥α,n⊥β,且m⊥n,則α⊥β;
③若m⊥β,m∥α,則α⊥β;
④若m∥α,n∥β,且m∥n,則α∥β.
其中正確命題的序號是(
A.①④
B.②③
C.②④
D.①③

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設 ,曲線y=f(x)在點(1,f(1))處的切線與直線x+y+1=0垂直.
(1)求a的值;
(2)若對于任意的x∈[1,+∞),f(x)≤m(x﹣1)恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在多面體ABCDM中,△BCD是等邊三角形,△CMD是等腰直角三角形,∠CMD=90°,平面CMD⊥平面BCD,AB⊥平面BCD.
(Ⅰ)求證:CD⊥AM;
(Ⅱ)若AM=BC=2,求直線AM與平面BDM所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函f(x)=lnx﹣ax2+(2﹣a)x. ①討論f(x)的單調性;
②設a>0,證明:當0<x< 時,
③函數y=f(x)的圖象與x軸相交于A、B兩點,線段AB中點的橫坐標為x0 , 證明f′(x0)<0.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某地要建造一個邊長為2(單位:km)的正方形市民休閑公園OABC,將其中的區域ODC開挖成一個池塘,如圖建立平面直角坐標系后,點D的坐標為(1,2),曲線OD是函數y=ax2圖象的一部分,對邊OA上一點M在區域OABD內作一次函數y=kx+b(k>0)的圖象,與線段DB交于點N(點N不與點D重合),且線段MN與曲線OD有且只有一個公共點P,四邊形MABN為綠化風景區:
(1)求證:b=﹣
(2)設點P的橫坐標為t,①用t表示M、N兩點坐標;②將四邊形MABN的面積S表示成關于t的函數S=S(t),并求S的最大值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视