【題目】若圓C的半徑為1,圓心在第一象限,且與直線4x﹣3y=0和x軸都相切,則該圓的標準方程是( )
A.(x﹣2)2+(y﹣1)2=1
B.(x﹣2)2+(y+1)2=1
C.(x+2)2+(y﹣1)2=1
D.(x﹣3)2+(y﹣1)2=1
科目:高中數學 來源: 題型:
【題目】已知二次函數的圖像經過點
,且滿足
,
(1)求的解析式;
(2)已知,求函數
在
的最大值和最小值;
函數的圖像上是否存在這樣的點,其橫坐標是正整數,縱坐標是一個完全平方數?如果存在,求出這樣的點的坐標;如果不存在,請說明理由
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司生產一批A產品需要原材料500噸,每噸原材料可創造利潤12萬元.該公司通過設備升級,生產這批A產品所需原材料減少了x噸,且每噸原材料創造的利潤提高0.5x%;若將少用的x噸原材料全部用于生產公司新開發的B產品,每噸原材料創造的利潤為12(a﹣ x)萬元(a>0).
(1)若設備升級后生產這批A產品的利潤不低于原來生產該批A產品的利潤,求x的取值范圍.
(2)若生產這批B產品的利潤始終不高于設備升級后生產這批A產品的利潤,求a的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(選修4﹣4:坐標系與參數方程)
已知曲線C1的參數方程為 (t為參數),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C2的極坐標方程為ρ=2sinθ.
(1)把C1的參數方程化為極坐標方程;
(2)求C1與C2交點的極坐標(ρ≥0,0≤θ<2π)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列各組中的兩個函數是同一函數的有幾組?
(1)y1=,y2=x–5; (2)y1=
,y2=
;
(3)f(x)=x,g(x)=; (4)f(x)=
,F(x)=x
.
A. 0組 B. 1組 C. 2組 D. 組3
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數在點
處的切線方程為
.
(1)求函數的解析式;
(2)求函數的單調區間和極值.
【答案】(1);(2)見解析.
【解析】試題分析:(1)根據導數幾何意義得,再與
聯立方程組解得
,
(2)先函數導數,再求導函數零點,列表分析導函數符號變化規律,進而確定單調區間和極值
試題解析:(1),切線為
,即斜率
,縱坐標
即,
,解得
,
解析式
(2)
,定義域為
得到在
單增,在
單減,在
單增
極大值,極小值
.
【題型】解答題
【結束】
20
【題目】如圖:在四棱錐中,底面
為菱形,且
,
底面
,
,
,
是
上點,且
平面
.
(1)求證: ;(2)求三棱錐
的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知命題:若關于
的方程
無實數根,則
;命題
:若關于
的方程
有兩個不相等的正實數根,則
.
(1)寫出命題的否命題,并判斷命題
的真假;
(2)判斷命題“且
”的真假,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,已知點為平面上一動點,
到直線
的距離為
,
.
(Ⅰ)求點的軌跡
的方程;
(Ⅱ)不過原點的直線
與
交于
兩點,線段
的中點為
,直線
與直線
交點的縱坐標為1,求
面積的最大值及此時直線
的方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com