【題目】將三個數,
,
給予適當的編排,分別取常用對數后成公差為1的等差數列,那么,此時
______。
【答案】
【解析】
設x=10a2+81a+207,y=a+2,z=26﹣2a.首先,由x>0,y>0,z>0,知﹣2<a<13.
其次,判斷x,y,z的大小關系.
由于x﹣y=10a2+80a+205,其判別式恒小于0,因此x﹣y>0,即x>y; 同樣,x﹣
z=10a2+83a+181的判別式也恒小于0,故x>z.此外,y﹣z=3(a﹣8),因當a=8時,y=z 不
合題意,所以分﹣2<a<8和8<a<13兩種情況討論.
(1)當﹣2<a<8.此時y<z,lgy,lgz,lgx構成公差為1的等差數列,所以lgx﹣lgz=lgz
﹣lgy=1.
∴x=10z,z=10y
∴10a2+81a+207=10(26﹣2a),26﹣2a=10(a+2).
∴a=∈(﹣2,8).
(2)8<a<13.此時y>z,lgz,lgy,lgx構成公差為1的等差數列,所以lgy﹣lgz=lgx﹣lgy=1.
∴y=10z,x=10y
∴a+2=10(26﹣2a),10a2+81a+207=10(a+2).
此時方程無解.因此只有a=合乎題意.
故答案為:
科目:高中數學 來源: 題型:
【題目】已知在平面直角坐標系中,動點
與兩定點
連線的斜率之積為
,記點
的軌跡為曲線
.
(1)求曲線的方程;
(2)若過點的直線
與曲線
交于
兩點,曲線
上是否存在點
使得四邊形
為平行四邊形?若存在,求直線
的方程,若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,已知點是拋物線
上一定點,直線
的傾斜角互補,且與拋物線另交于
,
兩個不同的點.
(1)求點到其準線的距離;
(2)求證:直線的斜率為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,已知點是拋物線
上一定點,直線
的傾斜角互補,且與拋物線另交于
,
兩個不同的點.
(1)求點到其準線的距離;
(2)求證:直線的斜率為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了推進課堂改革,提高課堂效率,銀川一中引進了平板教學,開始推進“智慧課堂”改革.學校教務處為了了解我校高二年級同學平板使用情況,從高二年級923名同學中抽取50名同學進行調查.先用簡單隨機抽樣從923人中剔除23人,剩下的900人再按系統抽樣方法抽取50人,則在這923人中,每個人被抽取的可能性 ( )
A.都相等,且為B.不全相等C.都相等,且為
D.都不相等
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
的左,右焦點分別為
,
,離心率為
,
是橢圓
上的動點,當
時,
的面積為
.
(1)求橢圓的標準方程;
(2)若過點的直線交橢圓
于
,
兩點,求
面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數(
),
.
(1)若對任意的,
,都有
恒成立,試求m的取值范圍;
(2)用表示m,n中的最小值,設函數
(
),討論關于x的方程
的實數解的個數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=sin(ωx+θ),其中ω>0,θ∈(0,),
=
=0,(x1≠x2),|x2-x1|min=
,f(x)=f(
-x),將函數f(x)的圖象向左平移
個單位長度得到函數g(x)的圖象,則函數g(x)的單調遞減區間是
A. [kπ-,kπ+
](k∈Z) B. [kπ,kπ+
](k∈Z)
C. [kπ+,kπ+
](k∈Z) D. [kπ+
,kπ+
](k∈Z)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com