精英家教網 > 高中數學 > 題目詳情

【題目】如圖所示,A,B,C是雙曲線 =1(a>0,b>0)上的三個點,AB經過原點O,AC經過右焦點F,若BF⊥AC且|BF|=|CF|,則該雙曲線的離心率是(

A.
B.
C.
D.3

【答案】A
【解析】解:由題意可得在直角三角形ABF中,OF為斜邊AB上的中線,即有|AB|=2|OA|=2|OF|=2c,
設A(m,n),則m2+n2=c2 ,
=1,
解得m= ,n=
即有A( , ),B(﹣ ,﹣ ),
又F(c,0),
由于BF⊥AC且|BF|=|CF|,
可設C(x,y),即有 =﹣1,
又(c+ 2+( 2=(x﹣c)2+y2 ,
可得x= ,y=﹣ ,
將C( ,﹣ )代入雙曲線方程,可得
=1,
化簡可得 (b2﹣a2)=a3 ,
由b2=c2﹣a2 , e= ,
可得(2e2﹣1)(e2﹣2)2=1,
對照選項,代入檢驗可得e= 成立.
故選:A.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】2016年入冬以來,各地霧霾天氣頻發,頻頻爆表(是指直徑小于或等于2.5微米的顆粒物),各地對機動車更是出臺了各類限行措施,為分析研究車流量與的濃度是否相關,某市現采集周一到周五某一時間段車流量與的數據如下表:

時間

周一

周二

周三

周四

周五

車流量(萬輛)

50

51

54

57

58

的濃度(微克/立方米)

69

70

74

78

79

(1)請根據上述數據,在下面給出的坐標系中畫出散點圖;

(2)試判斷是否具有線性關系,若有請求出關于的線性回歸方程,若沒有,請說明理由;

(3)若周六同一時間段的車流量為60萬輛,試根據(2)得出的結論,預報該時間段的的濃度(保留整數).

參考公式: ,.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列說法錯誤的是(
A.設p:f(x)=x3+2x2+mx+1是R上的單調增函數, ,則p是q的必要不充分條件
B.若命題 ,則¬p:?x∈R,x2﹣x+1>0
C.奇函數f(x)定義域為R,且f(x﹣1)=﹣f(x),那么f(8)=0
D.命題“若x2+y2=0,則x=y=0”的逆否命題為“若x,y中至少有一個不為0,則x2+y2≠0”

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-4:坐標系與參數方程

已知過點的直線的參數方程是為參數).以平面直角坐標系的原點為極點, 軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程式為.

)求直線的普通方程和曲線的直角坐標方程;

)若直線與曲線交于兩點,且,求實數的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若關于x的不等式|x+a|≤b的解集為[﹣6,2].
(1)求實數a,b的值;
(2)若實數m,n滿足|am+n|< ,|m﹣bn|< ,求證:|n|<

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】各棱長都等于4的四面ABCD中,設G為BC的中點,E為△ACD內的動點(含邊界),且GE∥平面ABD,若 =1,則| |=

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=xlnx+ax(a∈R).
(Ⅰ)當a=0,求f(x)的最小值;
(Ⅱ)若函數g(x)=f(x)+lnx在區間[1,+∞)上為增函數,求實數a的取值范圍;
(Ⅲ)過點P(1,﹣3)恰好能作函數y=f(x)圖象的兩條切線,并且兩切線的傾斜角互補,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=|x2﹣1|+x2﹣kx.
(1)若k=2時,求出函數f(x)的單調區間及最小值;
(2)若f(x)≥0恒成立,求實數k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】O為△ABC內一點,且2 , =t ,若B,O,D三點共線,則t的值為(
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视