精英家教網 > 高中數學 > 題目詳情

【題目】若關于x的不等式|x+a|≤b的解集為[﹣6,2].
(1)求實數a,b的值;
(2)若實數m,n滿足|am+n|< ,|m﹣bn|< ,求證:|n|<

【答案】
(1)解:關于x的不等式|x+a|≤b的解集為[﹣b﹣a,b﹣a],

∵關于x的不等式|x+a|≤b的解集為[﹣6,2],

,∴a=2,b=4


(2)證明:∵實數m,n滿足|am+n|< ,|m﹣bn|<

∴|n|= |(2m+n)﹣(2m﹣8n)|≤ |2m+n|+2|m﹣4n|< =


【解析】(1)關于x的不等式|x+a|≤b的解集為[﹣b﹣a,b﹣a],利用條件建立方程組,即可求實數a,b的值;(2)利用|n|= |(2m+n)﹣(2m﹣8n)|≤ |2m+n|+2|m﹣4n|,即可證明結論.
【考點精析】根據題目的已知條件,利用絕對值不等式的解法的相關知識可以得到問題的答案,需要掌握含絕對值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規律:關鍵是去掉絕對值的符號.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】現采用隨機模擬的方法估計某運動員射擊4次,至少擊中3次的概率:先由計算器給出0到9之間取整數值的隨機數,指定0,1表示沒有擊中目標,2,3,4,5,6,7,8,

9表示擊中目標,以4個隨機數為一組,代表射擊4次的結果,經隨機模擬產生了20組隨機數:

7527

0293

7140

9857

0347

4373

8636

6947

1417

4698

0371

6233

2616

8045

6011

3661

9597

7424

7610

4281

根據以上數據估計該射擊運動員射擊4次至少擊中3次的概率為_______

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數f(x)=-x3x2+(m2-1)x(xR),其中m>0.

(1)m=1,求曲線yf(x)在點(1,f(1))處的切線斜率;

(2)求函數的單調區間與極值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在統計學中,偏差是指個別測定值與測定的平均值之差,在成績統計中,我們把某個同學的某科考試成績與該科班平均分的差叫某科偏差,班主任為了了解個別學生的偏科情況,對學生數學偏差x(單位:分)與物理偏差y(單位:分)之間的關系進行學科偏差分析,決定從全班56位同學中隨機抽取一個容量為8的樣本進行分析,得到他們的兩科成績偏差數據如下:

學生序號

1

2

3

4

5

6

7

8

數學偏差x

20

15

13

3

2

5

10

18

物理偏差y

6.5

3.5

3.5

1.5

0.5

0.5

2.5

3.5

(1)已知xy之間具有線性相關關系,求y關于x的線性回歸方程;

(2)若這次考試該班數學平均分為118分,物理平均分為90.5,試預測數學成績126分的同學的物理成績.

參考公式 .

參考數據: .

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某車間為了規定工時定額,需要確定加工零件所花費的時間,為此作了四次試驗,得到的數據如下:

零件的個數x(個)

2

3

4

5

加工的時間y(小時)

2.5

3

4

4.5

(1)在給定的坐標系中畫出表中數據的散點圖;

(2)求出y關于x的線性回歸方程;

(3)試預測加工10個零件需要多少時間.

參考公式:回歸直線,

其中

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,A,B,C是雙曲線 =1(a>0,b>0)上的三個點,AB經過原點O,AC經過右焦點F,若BF⊥AC且|BF|=|CF|,則該雙曲線的離心率是(

A.
B.
C.
D.3

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列{an}的前n項和為Sn , 若a1=1,且Sn=tan ,其中n∈N*.
(1)求實數t的值和數列{an}的通項公式;
(2)若數列{bn}滿足bn=log3a2n , 求數列{ }的前n項和Tn

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)= sinωx+cosωx+c(ω>0,x∈R,c是常數)圖象上的一個最高點為( ,1),與其相鄰的最低點是( ,﹣3).
(1)求函數f(x)的解析式及其對稱中心;
(2)在△ABC中,角A,B,C所對的邊分別為a,b,c,且 =﹣ ac,試求函數f(A)的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)的定義域為[﹣1,5],部分對應值如表,f(x)的導函數y=f′(x)的圖象如圖所示,下列關于函數f(x)的命題:

x

﹣1

0

4

5

f(x)

1

2

2

1

(1)函數y=f(x)是周期函數;
(2)函數f(x)在(0,2)上是減函數;
(3)如果當x∈[﹣1,t]時,f(x)的最大值是2,那么t的最大值為4;
(4)當1<a<2時,函數y=f(x)﹣a有4個零點.
其中真命題的個數有( )

A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视