【題目】已知橢圓的上頂點為
,以
為圓心橢圓的長半軸為半徑的圓與
軸的交點分別為
,
.
(1)求橢圓的標準方程;
(2)設不經過點的直線
與橢圓
交于
,
兩點,且
,試探究直線
是否過定點?若過定點,求出該定點的坐標,若不過定點,請說明理由.
科目:高中數學 來源: 題型:
【題目】已知數列{an}的前n項和為Sn,2Sn+2n=an+1﹣2,a2=8,其中n∈N*.
(1)記bn=an+1,求證:{bn}是等比數列;
(2)設為數列{cn}的前n項和,若不等式k>Tn對任意的n∈N*恒成立,求實數k的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某健身館在2019年7、8兩月推出優惠項目吸引了一批客戶.為預估2020年7、8兩月客戶投入的健身消費金額,健身館隨機抽樣統計了2019年7、8兩月100名客戶的消費金額,分組如下:(單位:元),得到如圖所示的頻率分布直方圖:
(1)若把2019年7、8兩月健身消費金額不低于800元的客戶,稱為“健身達人”,經數據 處理,現在列聯表中得到一定的相關數據,請補全空格處的數據,并根據列聯表判斷是否有的把握認為“健身達人”與性別有關?
健身達人 | 非健身達人 | 總計 | |
男 | 10 | ||
女 | 30 | ||
總計 |
(2)為吸引顧客,在健身項目之外,該健身館特別推出健身配套營養品的銷售,現有兩種促銷方案.
方案一:每滿800元可立減100元;
方案二:金額超過800元可抽獎三次,每次中獎的概率為,且每次抽獎互不影響,中獎1次打9折,中獎2次打8折,中獎3次打7折.
若某人打算購買1000元的營養品,請從實際付款金額的數學期望的角度分析應該選擇哪種優惠方案.
(3)在(2)中的方案二中,金額超過800元可抽獎三次,假設三次中獎結果互不影響,且三次中獎的概率為,記
為銳角
的內角,
求證:
附:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知中心在原點的雙曲線C的漸近線方程為y=±2x,且該雙曲線過點(2,2).
(1)求雙曲線C的標準方程;
(2)點A為雙曲線C上任一點,F1F2分別為雙曲線的左右焦點,過其中的一個焦點作∠F1AF2的角平分線的垂線,垂足為點P,求點P的軌跡方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】我國是世界上嚴重缺水的國家,城市缺水問題尤為突出,某市為了鼓勵居民節約用水,計劃在本市試行居民生活用水定額管理,即確定一個合理的居民月用水量標準:(單位:噸),用水量不超過的部分按平價收費,超過
的部分按議價收費,為了了解全市市民用用水量分布情況,通過袖樣,獲得了100位居民某年的月用水量(單位:噸),將數據按照
,
……
分成9組,制成了如圖所示的頻率分布直方圖.
(1)求頻率分布直方圖中的值,并估計該市市民月用水量的中位數;
(2)若該市政府希望使85%的居民每月的用水量不超過標準(噸),估計
的值,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線的焦點為F,直線
與拋物線C相切于點P,過點P作拋物線C的割線PQ,割線PQ與拋物線C的另一交點為Q,A為PQ的中點.過A作y軸的垂線與y軸交于點H,與直線l相交于點N,M為線段AN的中點.
(1)求拋物線C的方程;
(2)在x軸上是否存在一點T,使得當割線PQ變化時,總有為定值?若存在,求出該點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2018年,南昌市召開了全球VR產業大會,為了增強對青少年VR知識的普及,某中學舉行了一次普及VR知識講座,并從參加講座的男生中隨機抽取了50人,女生中隨機抽取了70人參加VR知識測試,成績分成優秀和非優秀兩類,統計兩類成績人數得到如下的列聯表:
優秀 | 非優秀 | 總計 | |
男生 | a | 35 | 50 |
女生 | 30 | d | 70 |
總計 | 45 | 75 | 120 |
(1)確定a,d的值;
(2)試判斷能否有90%的把握認為VR知識的測試成績優秀與否與性別有關;
(3)為了宣傳普及VR知識,從該校測試成績獲得優秀的同學中按性別采用分層抽樣的方法,隨機選出6名組成宣傳普及小組.現從這6人中隨機抽取2名到校外宣傳,求“到校外宣傳的2名同學中至少有1名是男生”的概率.
附:
P(K2≥k0) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
k0 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖1,在直角梯形ABCD中,,
,
,
,E是AD的中點,O是AC與BE的交點.將
沿BE折起到圖2中
的位置,得到四棱錐
.
(1)證明:平面
;
(2)若平面平面
,求平面
與平面
夾角(銳角)的余弦值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com