精英家教網 > 高中數學 > 題目詳情

對于函數,若在定義域內存在實數,滿足,則稱為“局部奇函數”.
(Ⅰ)已知二次函數,試判斷是否為“局部奇函數”?并說明理由;
(Ⅱ)若是定義在區間上的“局部奇函數”,求實數的取值范圍;
(Ⅲ)若為定義域上的“局部奇函數”,求實數的取值范圍.

(Ⅰ)是,理由詳見解析;(Ⅱ);(Ⅲ)

解析試題分析:(Ⅰ)判斷方程是否有解;(Ⅱ)在方程有解時,通過分離參數求取值范圍;(Ⅲ)在不便于分離參數時,通二次函數的圖象判斷一元二次方程根的分布.
試題解析:為“局部奇函數”等價于關于的方程有解.
(Ⅰ)當時,
方程有解,
所以為“局部奇函數”.                                           3分
(Ⅱ)當時,可化為
因為的定義域為,所以方程上有解.    5分
,則
,則,
時,,故上為減函數,
時,,故上為增函數,.              7分
所以時,
所以,即.                                 9分
(Ⅲ)當時,可化為

,則,
從而有解即可保證為“局部奇函數”.   11分
,
1° 當,有解,
,即,解得;        13分
2° 當時,有解等價于
解得.                 15分
(說明:也可轉化為大根大于等于2求解)
綜上,所求實數m的取值范圍為.                   16分
考點:函數的值域、方程解的存在性的判定.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

設函數.
(1)當時,證明:函數不是奇函數;
(2)設函數是奇函數,求的值;
(3)在(2)條件下,判斷并證明函數的單調性,并求不等式的解集.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知定義域為的函數是奇函數.
(1)求的值;
(2)判斷函數的單調性,并證明.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知冪函數的圖象與x軸,y軸無交點且關于原點對稱,又有函數f(x)=x2-alnx+m-2在(1,2]上是增函數,g(x)=x-在(0,1)上為減函數.
①求a的值;
②若,數列{an}滿足a1=1,an+1=p(an),(n∈N+),數列{bn},滿足,,求數列{an}的通項公式an和sn.
③設,試比較[h(x)]n+2與h(xn)+2n的大。╪∈N+),并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,函數.
(1)判斷函數的奇偶性;
(2)若當時,恒成立,求實數的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數.
(I)求函數的單調區間;
(Ⅱ)若,對都有成立,求實數的取值范圍;
(Ⅲ)證明:).

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
若函數上是增函數,在是減函數,求的值;
討論函數的單調遞減區間;
如果存在,使函數,,在處取得最小值,試求的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數滿足:),
(1)用反證法證明:不可能為正比例函數;
(2)若,求的值,并用數學歸納法證明:對任意的,均有:.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數,其中為常數.
(Ⅰ)當時,判斷函數在定義域上的單調性;
(Ⅱ)當時,求的極值點并判斷是極大值還是極小值;
(Ⅲ)求證對任意不小于3的正整數,不等式都成立.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视