【題目】設為彼此不重合的三個平面,
為直線,給出下列結論:
①若 ,則
②若
,且
則
③若直線與平面
內的無數條直線垂直,則
④若內存在不共線的三點到
的距離相等,則
上面結論中,正確的序號為_______.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=xlnx+ mx2﹣(m+1)x+1.
(1)若g(x)=f'(x),討論g(x)的單調性;
(2)若f(x)在x=1處取得極小值,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著電子商務的發展, 人們的購物習慣正在改變, 基本上所有的需求都可以通過網絡購物解決. 小韓是位網購達人, 每次購買商品成功后都會對電商的商品和服務進行評價. 現對其近年的200次成功交易進行評價統計, 統計結果如下表所示.
對服務好評 | 對服務不滿意 | 合計 | |
對商品好評 | 80 | 40 | 120 |
對商品不滿意 | 70 | 10 | 80 |
合計 | 150 | 50 | 200 |
(1) 是否有的把握認為商品好評與服務好評有關? 請說明理由;
(2) 若針對商品的好評率, 采用分層抽樣的方式從這200次交易中取出5次交易, 并從中選擇兩次交易進行觀察, 求只有一次好評的概率.
(,其中
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知x∈(1,+∞),函數f(x)=ex+2ax(a∈R),函數g(x)=| ﹣lnx|+lnx,其中e為自然對數的底數.
(1)若a=﹣ ,求函數f(x)的單調區間;
(2)證明:當a∈(2,+∞)時,f′(x﹣1)>g(x)+a.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】三國時期吳國的數學家趙爽曾創制了一幅“勾股圓方圖”,用數形結合的方法給出了勾股定理的詳細證明.如圖所示的“勾股圓方圖”中,四個全等的直角三角形與中間的小正方形拼成一個大正方形,其中一個直角三角形中較小的銳角滿足
,現向大正方形內隨機投擲一枚飛鏢,則飛鏢落在小正方形內的概率是
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在P地正西方向8km的A處和正東方向1km的B處各有一條正北方向的公路AC和BD,現計劃在AC和BD路邊各修建一個物流中心E和F,為緩解交通壓力,決定修建兩條互相垂直的公路PE和PF,設∠EPA=α(0<α< ).
(1)為減少對周邊區域的影響,試確定E,F的位置,使△PAE與△PFB的面積之和最;
(2)為節省建設成本,試確定E,F的位置,使PE+PF的值最。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知四棱錐P﹣ABCD中,PA⊥BD,底面ABCD是邊長為a的菱形,∠BAD=120°,PA=b,AC與BD交于點O,M為OC的中點.
(1)求證:平面PAC⊥平面ABCD;
(2)若∠PAC=90°,二面角O﹣PM﹣D的正切值為 ,求a:b的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某企業為了解下屬某部門對本企業職工的服務情況,隨機訪問50名職工,根據這50名職工對該部門的評分,繪制頻率分布直方圖(如圖所示),其中樣本數據分組區間為
(1)求頻率分布直方圖中的值;
(2)估計該企業的職工對該部門評分不低于80的概率;
(3)從評分在的受訪職工中,隨機抽取2人,求此2人評分都在
的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com