【題目】假設有一套住房的房價從2002年的20萬元上漲到2012年的40萬元,下表給出了兩種價格增長方式,其中是按直線上升的房價,
是按指數增長的房價,t是2002年以來經過的年數.
t | 0 | 5 | 10 | 15 | 20 |
| 20 | 30 | 40 | 50 | 60 |
| 20 | 40 | 80 |
(1)求函數的解析式;
(2)求函數的解析式;
(3)完成上表空格中的數據,并在同一直角坐標系中畫出兩個函數的圖象,然后比較兩種價格增長方式的差異.
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為
,以橢圓
的任意三個頂點為頂點的三角形的面積是
.
(1)求橢圓的方程;
(2)設是橢圓
的右頂點,點
在
軸上.若橢圓
上存在點
,使得
,求點
橫坐標的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,曲線
的參數方程為
(
,
為參數),以坐標原點
為極點,
軸正半軸為極軸建立極坐標系,直線
的極坐標方程為
,若直線
與曲線
相切;
(1)求曲線的極坐標方程;
(2)在曲線上取兩點
,
與原點
構成
,且滿足
,求面積
的最大值.
【答案】(1);(2)
【解析】試題分析:(1)利用極坐標與直角坐標的互化公式可得直線的直角坐標方程為
,
,消去參數可知曲線
是圓心為
,半徑為
的圓,由直線
與曲線
相切,可得:
;則曲線C的方程為
, 再次利用極坐標與直角坐標的互化公式可得
可得曲線C的極坐標方程.
(2)由(1)不妨設M(),
,(
),
,
,
由此可求面積的最大值.
試題解析:(1)由題意可知直線的直角坐標方程為
,
曲線是圓心為
,半徑為
的圓,直線
與曲線
相切,可得:
;可知曲線C的方程為
,
所以曲線C的極坐標方程為,
即.
(2)由(1)不妨設M(),
,(
),
,
,
當 時,
,
所以△MON面積的最大值為.
【題型】解答題
【結束】
23
【題目】已知函數的定義域為
;
(1)求實數的取值范圍;
(2)設實數為
的最大值,若實數
,
,
滿足
,求
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】上饒某購物中心在開業之后,為了解消費者購物金額的分布,在當月的電腦消費小票中隨機抽取張進行統計,將結果分成5組,分別是
,制成如圖所示的頻率分布直方圖(假設消費金額均在
元的區間內).
(1)若在消費金額為元區間內按分層抽樣抽取6張電腦小票,再從中任選2張,求這2張小票均來自
元區間的概率;
(2)為做好五一勞動節期間的商場促銷活動,策劃人員設計了兩種不同的促銷方案:
方案一:全場商品打8.5折;
方案二:全場購物滿200元減20元,滿400元減50元,滿600元減80元,滿800元減120元,以上減免只取最高優惠,不重復減免.利用直方圖的信息分析哪種方案優惠力度更大,并說明理由(直方圖中每個小組取中間值作為該組數據的替代值).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=loga(x+1),g(x)=2loga(2x+t)(t∈R),其中x∈[0,15],a>0,且a≠1.
(1)若1是關于x的方程f(x)﹣g(x)=0的一個解,求t的值;
(2)當0<a<1時,不等式f(x)≥g(x)恒成立,求t的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】橢圓的離心率為
,且過點
.
(1)求橢圓的方程;
(2)設為橢圓
上任一點,
為其右焦點,點
滿足
.
①證明: 為定值;
②設直線與橢圓
有兩個不同的交點
,與
軸交于點
.若
成等差數列,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,角A,B,C的對邊分別為a,b,c.已知2cos(B-C)+1=4cosBcosC.
(Ⅰ)求A;
(Ⅱ)若a=2,△ABC的面積為2
,求b+c.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com