【題目】已知函數f(x)=xlnx+(1﹣x)ln(1﹣x),x∈(0,1).
(1)求f(x)的最小值;
(2)若a+b+c=1,a,b,c∈(0,1).求證:alna+blnb+clnc≥(a﹣2)ln2.
【答案】
(1)解: ,
令 .
當 時,f′(x)<0;當
時,f′(x)>0.
所以, .
(2)證明:由a+b+c=1,a,b,c∈(0,1),得 ,
.
由(1),當x∈(0,1),xlnx+(1﹣x)ln(1﹣x)≥﹣ln2,
所以, ,
,
blnb+clnc≥(a﹣1)ln2+(b+c)ln(1﹣a)=(a﹣1)ln2+(1﹣a)ln(1﹣a).(*)
因為a∈(0,1),由(1),alna+(1﹣a)ln(1﹣a)≥﹣ln2,
所以,(1﹣a)ln(1﹣a)≥﹣alna﹣ln2.(**)
由(*) (**),blnb+clnc≥(a﹣1)ln2﹣alna﹣ln2,
所以,alna+blnb+clnc≥(a﹣2)ln2.
【解析】(1)求函數的最值問題,需求出該函數的導函數,判斷函數的單調性,求出極值點,在給定區間內求解函數的最小值;
(2)由a+b+c=1,推出,由(1)的結果轉化推出
,即可證明
【考點精析】本題主要考查了不等式的證明的相關知識點,需要掌握不等式證明的幾種常用方法:常用方法有:比較法(作差,作商法)、綜合法、分析法;其它方法有:換元法、反證法、放縮法、構造法,函數單調性法,數學歸納法等才能正確解答此題.
科目:高中數學 來源: 題型:
【題目】小張于年初支出50萬元購買一輛大貨車,第一年因繳納各種費用需支出6萬元,從第二年起,每年都比上一年增加支出2萬元,假定該車每年的運輸收入均為25萬元.小張在該車運輸累計收入超過總支出后,考慮將大貨車作為二手車出售,若該車在第x年年底出售,其銷售收入為25﹣x萬元(國家規定大貨車的報廢年限為10年).
(1)大貨車運輸到第幾年年底,該車運輸累計收入超過總支出?
(2)在第幾年年底將大貨車出售,能使小張獲得的年平均利潤最大?(利潤=累計收入+銷售收入﹣總支出)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓E: (a>b>0)的右準線的方程為x=
,左、右兩個焦點分別為F1(
),F2(
).
(1)求橢圓E的方程;
(2)過F1 , F2兩點分別作兩條平行直線F1C和F2B交橢圓E于C,B兩點(C,B均在x軸上方),且F1C+F2B等于橢圓E的短軸的長,求直線F1C的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱柱ABCD﹣A1B1C1D1中,側面ADD1A1⊥底面ABCD,D1A=D1D= ,底面ABCD為直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O為AD中點.
(Ⅰ)求證:A1O∥平面AB1C;
(Ⅱ)求銳二面角A﹣C1D1﹣C的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=nx﹣xn , x∈R,其中n∈N , 且n≥2.
(Ⅰ)討論f(x)的單調性;
(Ⅱ)設曲線y=f(x)與x軸正半軸的交點為P,曲線在點P處的切線方程為y=g(x),求證:對于任意的正實數x,都有f(x)≤g(x);
(Ⅲ)若關于x的方程f(x)=a(a為實數)有兩個正實數根x1 , x2 , 求證:|x2﹣x1|< +2.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】廣東佛山某學校參加暑假社會實踐活動知識競賽的學生中,得分在[80,90)中的有16人,得分在[90,100]中的有4人,用分層抽樣的方法從得分在[80,100]的學生中抽取一個容量為5的樣本,將該樣本看成一個整體,從中任意選取2人,則其中恰有1人分數不低于90的概率為( 。
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com