【題目】設函數(
為常數,
是自然對數的底數).
(Ⅰ)當時,求函數
的單調區間;
(Ⅱ)若函數在
內存在兩個極值點,求
的取值范圍.
【答案】(1)單調遞減區間為單調遞增區間為
.(2)
【解析】分析:(Ⅰ)求出,在定義域內,分別令
求得
的范圍,可得函數
增區間,
求得
的范圍,可得函數
的減區間;(Ⅱ)函數
在
內存在兩個極值點,等價于它的導函數
在
內存內有兩個不同的零點. 分三種情況討論,分別利用導數研究函數的單調性,結合函數圖,利用兩點存在定理列不等式組,從而可得符合題意的
的取值范圍.
詳解:(Ⅰ)的定義域為
,
當時,
,
令則
當
時,
單調遞減;
當
單調遞增,
的單調遞減區間為
單調遞增區間為
.
(Ⅱ)由(Ⅰ)知,時,函數
在
內單調遞減,
故在
內不存在極值點;
當,設函數
.
,
當時,
當時,
,
單調遞增,
故故在
內不存在兩個極值點;
當時,
得時,
,函數
單調遞減,
時,
,函數
單調遞增,
函數
的最小值為
函數在
內存在兩個極值點
當且僅當
解得:
綜上所述,函數在
內存在兩個極值點時,
的取值范圍為
.
科目:高中數學 來源: 題型:
【題目】設k>0,函數f(x)=+x+kln|x﹣1|.
(1)討論函數f(x)的單調性;
(2)當函數f(x)有兩個極值點,且0<θ<π時,證明:(2k﹣1)sinθ+(1﹣k)sin[(1﹣k)θ]>0.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知正三棱錐P﹣ABC,點P、A、B、C都在半徑為的球面上,若PA、PB、PC兩兩互相垂直,則球心到截面ABC的距離為( 。
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=|x﹣a|,其中a>1
(1)當a=2時,求不等式f(x)≥4﹣|x﹣4|的解集;
(2)已知關于x的不等式|f(2x+a)﹣2f(x)|≤2的解集{x|1≤x≤2},求a的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某中學在校就餐的高一年級學生有440名,高二年級學生有460名,高三年級學生有500名;為了解學校食堂的服務質量情況,用分層抽樣的方法從中抽取70名學生進行抽樣調查,把學生對食堂的“服務滿意度”與“價格滿意度”都分為五個等級:1級(很不滿意);2級(不滿意);3級(一般);4級(滿意);5級(很滿意),其統計結果如下表(服務滿意度為x,價格滿意度為y).
y | 價格滿意度 | |||||
1 | 2 | 3 | 4 | 5 | ||
服 | 1 | 1 | 1 | 2 | 2 | 0 |
2 | 2 | 1 | 3 | 4 | 1 | |
3 | 3 | 7 | 8 | 8 | 4 | |
4 | 1 | 4 | 6 | 4 | 1 | |
5 | 0 | 1 | 2 | 3 | 1 |
(1)求高二年級共抽取學生人數;
(2)求“服務滿意度”為3時的5個“價格滿意度”數據的方差;
(3)為提高食堂服務質量,現從x<3且2≤y<4的所有學生中隨機抽取兩人征求意見,求至少有一人的“服務滿意度”為1的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】養正中學新校區內有一塊以O為圓心,R(單位:米)為半徑的半圓形荒地(如圖),?倓仗幱媱潓ζ溟_發利用,其中弓形BCD區域(陰影部分)用于種植觀賞植物,△OBD區域用于種植花卉出售,其余區域用于種植草皮出售。已知種植觀賞植物的成本是每平方米20元,種植花卉的利潤是每平方米80元,種植草皮的利潤是每平方米30元。
(1)設(單位:弧度),用
表示弓形BCD的面積
(2)如果該校總務處邀請你規劃這塊土地。如何設計的大小才能使總利潤最大?并求出該最大值
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】點O為坐標原點,直線l經過拋物線C:y2=4x的焦點F.
(Ⅰ)若點O到直線l的距離為 , 求直線l的方程;
(Ⅱ)設點A是直線l與拋物線C在第一象限的交點.點B是以點F為圓心,|FA|為半徑的圓與x軸負半軸的交點.試判斷直線AB與拋物線C的位置關系,并給出證明.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com