【題目】如圖,在三棱錐V-ABC中,平面VAB平面ABC,
VAB為等邊三角形,AC
BC且AC=BC=
,O,M分別為AB,VA的中點。
(I)求證:VB//平面MOC;
(II)求證:平面MOC平面VAB;
(III)求三棱錐V-ABC的體積。
【答案】(Ⅰ)見解析;(Ⅱ)見解析;(III).
【解析】試題分析:(1)由中位線定理得OM//VB,故而VB∥平面MOC;
(2)由等腰三角形三線合一可知OC⊥AB,利用面面垂直的性質得出OC⊥平面VAB,進而證得平面MOC平面VAB;
(3)由勾股定理求出AB,OC,得出△VAB的面積,代入棱錐的體積公式即可.
試題解析:
(I)因為O,M分別為AB,VA的中點,
所以OM//VB
又因為VB平面MOC
所以VB//平面MOC
(II)因為AC=BC,O為AB的中點,
所以OCAB
又因為平面VAB平面ABC,且OC
平面ABC,
所以OC平面VAB。
∴平面MOC平面VAB;
(III)在等腰直角三角形ACB中,AC=BC=,
所以AB=2,OC=1.
所以等邊三角形VAB的面積.
又因為CO平面VAB,
所以三棱錐C-VAB的體積等于.
又因為三棱錐V-ABC的體積與三棱錐C-VAB的體積相等,
所以三棱錐V-ABC的體積為。
科目:高中數學 來源: 題型:
【題目】如圖,在三棱錐中,
底面
分別是
的中點,
在
,且
.
(1)求證: 平面
;
(2)在線段上是否存在點
,使二面角
的大小為
?若存在,求出
的長;
若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,底面
是平行四邊形,
,側面
底面
,
,
,
分別為
的中點,點
在線段
上.
(Ⅰ)求證:平面
;
(Ⅱ)如果直線與平面
所成的角和直線
與平面
所成的角相等,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱柱ABC﹣A1B1C1中,AA1C1C是邊長為4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.
(Ⅰ)求證:AA1⊥平面ABC;
(Ⅱ)求證二面角A1﹣BC1﹣B1的余弦值;
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(改編)已知正數數列的前
項和為
,且滿足
;在數列
中,
(1)求數列和
的通項公式;
(2)設,數列
的前
項和為
. 若對任意
,存在實數
,使
恒成立,求
的最小值;
(3)記數列的前
項和為
,證明:
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四邊形是直角梯形,
,
,
,
,又
,
,
,直線
與直線
所成的角為
.
(1)求證:平面平面
;
(2)(文科)求三棱錐的體積.
(理科)求二面角平面角正切值的大小.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某基地蔬菜大棚采用水培、無土栽培方式種植各類蔬菜.過去50周的資料顯示,該地周光照量(小時)都在30小時以上,其中不足50小時的周數有5周,不低于50小時且不超過70小時的周數有35周,超過70小時的周數有10周.根據統計,該基地的西紅柿增加量
(百斤)與使用某種液體肥料
(千克)之間對應數據為如圖所示的折線圖.
(1)依據數據的折線圖,是否可用線性回歸模型擬合與
的關系?請計算相關系數
并加以說明(精確到0.01).(若
,則線性相關程度很高,可用線性回歸模型擬合)
(2)蔬菜大棚對光照要求較大,某光照控制儀商家為該基地提供了部分光照控制儀,但每周光照控制儀最多可運行臺數受周光照量限制,并有如下關系:
周光照量 | |||
光照控制儀最多可運行臺數 | 3 | 2 | 1 |
若某臺光照控制儀運行,則該臺光照控制儀周利潤為3000元;若某臺光照控制儀未運行,則該臺光照控制儀周虧損1000元.若商家安裝了3臺光照控制儀,求商家在過去50周周總利潤的平均值.
附:相關系數公式,參考數據
,
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com