【題目】已知橢圓的離心率為
,其過點
,其長軸的左右兩個端點分別為
,直線
交橢圓于兩點
.
(1)求橢圓的標準方程;
(2)設直線的斜率分別為
,若
,求
的值.
【答案】(1)(2)
【解析】試題分析:(1)由橢圓的離心率為 ,且過點
,列出方程組,求出
,由此能求出橢圓方程;(2)聯立方程
,得
,由此利用根的判別式、韋達定理、直線方程,結合已知條件能求出
的值.
試題解析:(1)由題意的,解得
,
所以橢圓的方程為.
(2)設,聯立方程
,得
,
所以判別式,
因為,
由題意知,所以
,
因為,即
,得
,
又,所以
,同理
,
代入上式,解得,即
,
所以,解得
,
又因為,所以
(舍去),所以
.
【方法點晴】本題主要考查待定系數求橢圓方程、韋達定理以及直線與橢圓的位置關系,屬于難題.用待定系數法求橢圓方程的一般步驟;①作判斷:根據條件判斷橢圓的焦點在軸上,還是在
軸上,還是兩個坐標軸都有可能;②設方程:根據上述判斷設方程
或
;③找關系:根據已知條件,建立關于
、
、
的方程組;④得方程:解方程組,將解代入所設方程,即為所求.
科目:高中數學 來源: 題型:
【題目】為了增強市民的環境保護組織,某市面向全市征召n名義務宣傳志愿者,成立環境保護宣傳組織,現按年齡把該組織的成員分成5組:[20,25),[25,30),[30,35),[35,40),[40,45]. 得到的頻率分布直方圖如圖所示,已知該組織的成員年齡在[35,40)內有20人
(1)求該組織的人數;
(2)若從該組織年齡在[20,25),[25,30),[30,35)內的成員中用分層抽樣的方法共抽取14名志愿者參加某社區的宣傳活動,問應各抽取多少名志愿者?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數y=f(x+1)的定義域是[﹣1,3],則y=f(x2)的定義域是( )
A.[0,4]
B.[0,16]
C.[﹣2,2]
D.[1,4]
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設數列{an}的前n項和為Sn , 并且滿足2Sn=an2+n,an>0(n∈N*).
(1)求a1 , a2 , a3;
(2)猜想{an}的通項公式,并加以證明;
(3)設x>0,y>0,且x+y=1,證明: ≤
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知橢圓C: ,點A,B分別是左、右頂點,過右焦點F的直線MN(異于x軸)交于橢圓C于M、N兩點.
(1)若橢圓C過點,且右準線方程為
,求橢圓C的方程;
(2)若直線BN的斜率是直線AM斜率的2倍,求橢圓C的離心率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知某運動員每次投籃命中的概率低于40%,現采用隨機模擬的方法估計該運動員三次投籃恰有兩次命中的概率:先由計算器產生0到9之間取整數值的隨機數,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三個隨機數為一組,代表三次投籃的結果.經隨機模擬產生了如下20組隨機數:
907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
據此估計,該運動員三次投籃恰有兩次命中的概率為( )
A.0.35
B.0.25
C.0.20
D.0.15
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖(1)五邊形中,
,將
沿
折到
的位置,得到四棱錐
,如圖(2),點
為線段
的中點,且
平面
.
(1)求證:平面平面
;
(2)若四棱柱的體積為
,求四面體
的體積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com