【題目】已知點,過點
且與
軸垂直的直線為
,
軸,交
于點
,直線
垂直平分
,交
于點
.
(1)求點的軌跡方程;
(2)記點的軌跡為曲線
,直線
與曲線
交于不同兩點
,且
(
為常數),直線
與
平行,且與曲線
相切,切點為
,試問
的面積是否為定值.若為定值,求出
的面積;若不是定值,說明理由.
【答案】(1)(2)
的面積為定值.
【解析】試題分析:
(1)根據拋物線的定義可得點M的軌跡,根據待定系數法可得軌跡方程.(2)設直線的方程為
,與拋物線方程聯立消元后可得
中點
.同樣設出切線方程
,與拋物線方程聯立消元后可得切點
的坐標為
,故得
軸.于是
,由此通過計算可證得
的面積為定值.
試題解析:
(1)由題意得,
即動點到點
的距離和到直線
的距離相等,
所以點的軌跡是以
為焦點,直線
為準線的拋物線,
根據拋物線定義可知點軌跡方程為
.
(2)由題意知,直線的斜率存在,設其方程為
,
由消去x整理得
.
則 .
設的中點為
,
則點.
由條件設切線方程為,
由消去y整理得
.
∵ 直線與拋物線相切,
∴,
∴ ,
∴切點的橫坐標為
,
∴ 點.
∴
軸.
∵,
∴,
∴.
∴,
∵為常數,
∴的面積為定值.
科目:高中數學 來源: 題型:
【題目】如圖1,梯形中,
,
,
,
,
為
中點.將
沿
翻折到
的位置,使
,如圖2.
(Ⅰ)求證:平面與平面
;
(Ⅱ)求直線與平面
所成角的正弦值;
(Ⅲ)設分別為
和
的中點,試比較三棱錐
和三棱錐
(圖中未畫出)的體積大小,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某課外實習作業小組調查了1000名職場人士,就入職兩家公司的意愿做了統計,得到如下數據分布:
(1)請分別計算40歲以上(含40歲)與40歲以下全體中選擇甲公司的頻率(保留兩位小數),根據計算結果,你能初步得出什么結論?
(2)若分析選擇意愿與年齡這兩個分類變量,計算得到的的觀測值為
,測得出“選擇意愿與年齡有關系”的結論犯錯誤的概率的上限是多少?并用統計學知識分析,選擇意愿與年齡變量和性別變量哪一個關聯性更大?
附:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知經過兩點的圓
半徑小于5,且在
軸上截得的線段長為
.
(1)求圓的方程;
(2)已知直線,若
與圓
交于
兩點,且以線段
為直徑的圓經過坐標原點,求直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某中學調查了某班全部名同學參加書法社團和演講社團的情況,數據如下表:(單位:人)
(1)能否由的把握認為參加書法社團和參加演講社團有關?
(附:
當時,有
的把握說事件
與
有關;當
,認為事件
與
是無關的)
(2)已知既參加書法社團又參加演講社團的名同學中,有
名男同學,
名女同學.現從這
名男同學和
名女同學中選
人參加綜合素質大賽,求被選中的男生人數
的分布列和期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
的離心率為
,以原點為圓心,橢圓的短半軸長為半徑的圓與直線
相切.
、
是橢圓
的右頂點與上頂點,直線
與橢圓相交于
、
兩點.
(Ⅰ)求橢圓的方程;
(Ⅱ)當四邊形面積取最大值時,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某地隨著經濟的發展,居民收入逐年增長,下表是該地一建設銀行連續五年的儲蓄存款(年底余額),如下表1:
年份x | 2011 | 2012 | 2013 | 2014 | 2015 |
儲蓄存款y(千億元) | 5 | 6 | 7 | 8 | 10 |
為了研究計算的方便,工作人員將上表的數據進行了處理, 得到下表2:
時間代號t | 1 | 2 | 3 | 4 | 5 |
z | 0 | 1 | 2 | 3 | 5 |
(Ⅰ)求z關于t的線性回歸方程;
(Ⅱ)通過(Ⅰ)中的方程,求出y關于x的回歸方程;
(Ⅲ)用所求回歸方程預測到2020年年底,該地儲蓄存款額可達多少?
(附:對于線性回歸方程,其中
)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com