精英家教網 > 高中數學 > 題目詳情

【題目】如圖,在直三棱柱中,分別是棱上的點(點不同于點),且,為棱上的點,且

求證:(1)平面平面;

2平面

【答案】(1)見解析;(2)見解析

【解析】

(1)推導出BB1⊥AD,AD⊥DE,從而AD⊥平面BCC1B1,由此能證明平面ADE⊥平面BCC1B1.(2)推導出BB1⊥平面A1B1C1,BB1⊥A1F,A1F⊥B1C1,從而A1F⊥平面BCC1B1,再由AD⊥平面BCC1B1,得A1F∥AD,由此能證明A1F∥平面ADE.

(1)在直三棱柱ABC﹣A1B1C1中,BB1⊥平面ABC,因為AD平面ABC,所以BB1⊥AD,

又因為AD⊥DE,在平面BCC1B1中,BB1與DE相交,

所以AD⊥平面BCC1B1,

又因為AD平面ADE,所以平面ADE⊥平面BCC1B1

(2)在直三棱柱ABC﹣A1B1C1中,BB1⊥平面A1B1C1,

因為A1F平面A1B1C1,所以BB1⊥A1F,

又因為A1F⊥B1C1,

在平面BCC1B1中,BB1∩B1C1=B1,

所以A1F⊥平面BCC1B1

在(1)中已證得AD⊥平面BCC1B1,

所以A1F∥AD,又因為A1F平面ADE,AD平面ADE,

所以A1F∥平面ADE.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】由無理數論引發的數字危機一直延續到19世紀,直到1872年,德國數學家戴德金從連續性的要求出發,用有理數的“分割”來定義無理數(史稱戴德金分割),并把實數理論建立在嚴格的科學基礎上,才結束了無理數被認為“無理”的時代,也結束了持續2000多年的數學史上的第一次大危機,所謂戴德金分割,是指將有理數集劃分為兩個非空的子集,且滿足,中的每一個元素都小于中的每一個元素,則稱為戴德金分割.試判斷,對于任一戴德金分割,下列選項中,可能成立的是____

沒有最大元素,有一個最小元素;②沒有最大元素,也沒有最小元素;

有一個最大元素,有一個最小元素;④有一個最大元素,沒有最小元素.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓:的四個頂點圍成的四邊形的面積為,原點到直線的距離為.

(1)求橢圓的方程;

(2)已知定點,是否存在過的直線,使與橢圓交于,兩點,且以為直徑的圓過橢圓的左頂點?若存在,求出的方程:若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的離心率,一條準線方程為

⑴求橢圓的方程;

⑵設為橢圓上的兩個動點,為坐標原點,且

①當直線的傾斜角為時,求的面積;

②是否存在以原點為圓心的定圓,使得該定圓始終與直線相切?若存在,請求出該定圓方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若函數在其定義域上恰有兩個零點,則正實數a的值為_____.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設有如下三個命題:

甲:相交直線l、m都在平面內,并且都不在平面內;

乙:直線l、m中至少有一條與平面相交;

丙:平面與平面相交.

當甲成立時  

A. 乙是丙的充分而不必要條件

B. 乙是丙的必要而不充分條件

C. 乙是丙的充分且必要條件

D. 乙既不是丙的充分條件又不是丙的必要條件

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數 ,則函數g(x)=xf(x)﹣1的零點的個數為(  )

A. 2B. 3C. 4D. 5

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓,該橢圓經過點,且離心率為.

(1)求橢圓的標準方程;

(2)設是圓上任意一點,由引橢圓的兩條切線,當兩條切線的斜率都存在時,證明:兩條切線斜率的積為定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某班進行了次數學測試,其中甲、乙兩人的成績統計情況如莖葉圖所示:

(I)該班數學老師決定從甲、乙兩人中選派一人去參加數學比賽,你認為誰去更合適?并說明理由;

(II)從甲的成績中人去兩次作進一步的分析,在抽取的兩次成績中,求至少有一次成績在之間的概率.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视