【題目】如圖,在直三棱柱中,
分別是棱
上的點(點
不同于點
),且
,
為棱
上的點,且
.
求證:(1)平面平面
;
(2)平面
.
【答案】(1)見解析;(2)見解析
【解析】
(1)推導出BB1⊥AD,AD⊥DE,從而AD⊥平面BCC1B1,由此能證明平面ADE⊥平面BCC1B1.(2)推導出BB1⊥平面A1B1C1,BB1⊥A1F,A1F⊥B1C1,從而A1F⊥平面BCC1B1,再由AD⊥平面BCC1B1,得A1F∥AD,由此能證明A1F∥平面ADE.
(1)在直三棱柱ABC﹣A1B1C1中,BB1⊥平面ABC,因為AD平面ABC,所以BB1⊥AD,
又因為AD⊥DE,在平面BCC1B1中,BB1與DE相交,
所以AD⊥平面BCC1B1,
又因為AD平面ADE,所以平面ADE⊥平面BCC1B1.
(2)在直三棱柱ABC﹣A1B1C1中,BB1⊥平面A1B1C1,
因為A1F平面A1B1C1,所以BB1⊥A1F,
又因為A1F⊥B1C1,
在平面BCC1B1中,BB1∩B1C1=B1,
所以A1F⊥平面BCC1B1,
在(1)中已證得AD⊥平面BCC1B1,
所以A1F∥AD,又因為A1F平面ADE,AD平面ADE,
所以A1F∥平面ADE.
科目:高中數學 來源: 題型:
【題目】由無理數論引發的數字危機一直延續到19世紀,直到1872年,德國數學家戴德金從連續性的要求出發,用有理數的“分割”來定義無理數(史稱戴德金分割),并把實數理論建立在嚴格的科學基礎上,才結束了無理數被認為“無理”的時代,也結束了持續2000多年的數學史上的第一次大危機,所謂戴德金分割,是指將有理數集劃分為兩個非空的子集
與
,且滿足
,
,
中的每一個元素都小于
中的每一個元素,則稱
為戴德金分割.試判斷,對于任一戴德金分割
,下列選項中,可能成立的是____.
①沒有最大元素,
有一個最小元素;②
沒有最大元素,
也沒有最小元素;
③有一個最大元素,
有一個最小元素;④
有一個最大元素,
沒有最小元素.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:的四個頂點圍成的四邊形的面積為
,原點到直線
的距離為
.
(1)求橢圓的方程;
(2)已知定點,是否存在過
的直線
,使
與橢圓
交于
,
兩點,且以
為直徑的圓過橢圓
的左頂點?若存在,求出
的方程:若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率
,一條準線方程為
⑴求橢圓的方程;
⑵設為橢圓
上的兩個動點,
為坐標原點,且
.
①當直線的傾斜角為
時,求
的面積;
②是否存在以原點為圓心的定圓,使得該定圓始終與直線
相切?若存在,請求出該定圓方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設有如下三個命題:
甲:相交直線l、m都在平面內,并且都不在平面
內;
乙:直線l、m中至少有一條與平面相交;
丙:平面與平面
相交.
當甲成立時
A. 乙是丙的充分而不必要條件
B. 乙是丙的必要而不充分條件
C. 乙是丙的充分且必要條件
D. 乙既不是丙的充分條件又不是丙的必要條件
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
,該橢圓經過點
,且離心率為
.
(1)求橢圓的標準方程;
(2)設是圓
上任意一點,由
引橢圓
的兩條切線
,
,當兩條切線的斜率都存在時,證明:兩條切線斜率的積為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某班進行了次數學測試,其中甲、乙兩人的成績統計情況如莖葉圖所示:
(I)該班數學老師決定從甲、乙兩人中選派一人去參加數學比賽,你認為誰去更合適?并說明理由;
(II)從甲的成績中人去兩次作進一步的分析,在抽取的兩次成績中,求至少有一次成績在之間的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com