【題目】設函數f(x)=Asin(ωx+φ)(A≠0,ω>0,<φ<
)的圖象關于直線
對稱,它的最小正周期為π,則( )
A. f(x)的圖象過點(0,) B. f(x)在
上是減函數
C. f(x)的一個對稱中心是 D. f(x)的一個對稱中心是
【答案】C
【解析】分析:根據周期求出ω,根據函數圖象關于直線x=對稱求出φ,可得函數的解析式,根據函數的解析式判斷各個選項是否正確.
詳解:由題意可得=π,∴ω=2,可得f(x)=Asin(2x+φ).
再由函數圖象關于直線x=對稱,故f(
)=Asin(
+φ)=±A,故可取φ=
.
故函數f(x)=Asin(2x+).
令2kπ+≤2x+
≤2kπ+
,k∈z,求得 kπ+
≤x≤kπ+
π,k∈z,
故函數的減區間為[kπ+,kπ+
],k∈z,故選項B不正確.
由于A不確定,故選項A不正確. 令2x+=kπ,k∈z,可得 x=
,k∈z,
故函數的對稱中心為 (,0),k∈z,故選項C正確.選項D不正確.
故選:C.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=|x﹣a|+|x+5﹣a|
(1)若不等式f(x)﹣|x﹣a|≤2的解集為[﹣5,﹣1],求實數a的值;
(2)若x0∈R,使得f(x0)<4m+m2 , 求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】我校高一年級研究性學習小組共有9名學生,其中有3名男生和6名女生.在研究性學習過程中,要進行兩次匯報活動(即開題匯報和結題匯報),每次匯報都從這9名學生中隨機選1 人作為代表發言.設每人每次被選中與否均互不影響.
(1)求兩次匯報活動都由小組成員甲發言的概率;
(2)設為男生發言次數與女生發言次數之差的絕對值,求
的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
()若關于
的不等式
的解集為
,求實數
的取值范圍.
()若關于
的不等式
的解集是
,求
,
的值.
()若關于
的不等式
的解集是
,集合
,若
,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】雙曲線的離心率為2,右焦點
到它的一條漸近線的距離為
。
(1)求雙曲線的標準方程;
(2)是否存在過點且與雙曲線的右支角不同的
兩點的直線
,當點滿足
時,使得點
在直線
上的射影點
滿足
?若存在,求出直線
的方程;若不存在,說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】本著健康、低碳的生活理念,租自行車騎游的人越來越多.某自行車租車點的收費標準是每車每次租時間不超過兩小時免費,超過兩個小時的部分每小時收費2元(不足1小時的部分按 1小時計算).有甲、乙兩人獨立來該租車點租車騎游(各租一車一次).設甲、乙不超過兩小時還車的概率分別為;兩小時以上且不超過三小時還車的概率分別為
;兩人租車時間都不會超過四小時.
(1)求甲、乙兩人所付租車費用相同的概率;
(2)設甲、乙兩人所付的租車費用之和為隨機變量,求
的分布列.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com