【題目】已知橢圓C1: (a>b>0)的離心率為
,P(﹣2,1)是C1上一點.
(1)求橢圓C1的方程;
(2)設A,B,Q是P分別關于兩坐標軸及坐標原點的對稱點,平行于AB的直線l交C1于異于P、Q的兩點C,D,點C關于原點的對稱點為E.證明:直線PD、PE與y軸圍成的三角形是等腰三角形.
【答案】
(1)解:由題意可得e= =
,且a2﹣b2=c2,
將P(﹣2,1)代入橢圓方程可得 =1,
解得a=2 ,b=
,c=
,
即有橢圓方程為
(2)解:證明:A,B,Q是P(﹣2,1)分別關于兩坐標軸及坐標原點的對稱點,
可設A(﹣2,﹣1),B(2,1),Q(2,﹣1),
直線l的斜率為k= ,設直線l的方程為y=
x+t,
代入橢圓x2+4y2=8,可得x2+2tx+2t2﹣4=0,
設C(x1,y1),D(x2,y2),E(﹣x1,﹣y1),
即有△=4t2﹣4(2t2﹣4)>0,解得﹣2<t<2,
x1+x2=﹣2t,x1x2=2t2﹣4,
設直線PD,PE的斜率為k1,k2,
則k1+k2= +
=
,
要證直線PD、PE與y軸圍成的三角形是等腰三角形,
只需證k1+k2=0,即(2﹣x1)(y2﹣1)﹣(2+x2)(y1+1)=0,
由y1= x1+t,y2=
x2+t,
可得(2﹣x1)(y2﹣1)﹣(2+x2)(y1+1)=2(y2﹣y1)﹣(x1y2+x2y1)+x1﹣x2﹣4
=x2﹣x1﹣(x1x2+tx1+tx2)+x1﹣x2﹣4=﹣x1x2﹣t(x1+x2)﹣4
=﹣(2t2﹣4)+2t2﹣4=0,
則直線PD、PE與y軸圍成的三角形是等腰三角形
【解析】(1)運用橢圓的離心率公式和P滿足橢圓方程,解得a,b,進而得到橢圓方程;(2)設A(﹣2,﹣1),B(2,1),Q(2,﹣1),設直線l的方程為y= x+t,代入橢圓方程,設C(x1 , y1),D(x2 , y2),E(﹣x1 , ﹣y1),運用韋達定理,設直線PD,PE的斜率為k1 , k2 , 要證直線PD、PE與y軸圍成的三角形是等腰三角形,只需證k1+k2=0,化簡整理,代入韋達定理,即可得證.
科目:高中數學 來源: 題型:
【題目】定義在[0,+∞)上的函數f(x)滿足:①當x∈[1,2)時, ;②x∈[0,+∞)都有f(2x)=2f(x).設關于x的函數F(x)=f(x)﹣a的零點從小到大依次為x1 , x2 , x3 , …xn , …,若
,則x1+x2+…+x2n= .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}的前n項和為Sn , Sn=n2+2n,bn=anan+1cos(n+1)π,數列{bn} 的前n項和為Tn , 若Tn≥tn2對n∈N*恒成立,則實數t的取值范圍是 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,已知
底面
,
,
,
,
,異面直線
和
所成角等于
.
(1)求直線和平面
所成角的正弦值;
(2)在棱上是否存在一點
,使得平面
與平面
所成銳二面角的正切值為
?若存在,指出點
在棱
上的位置;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】前不久商丘市因環境污染嚴重被環保部約談后,商丘市近期加大環境治理力度,如表提供了商丘某企業節能降耗技術改造后生產甲產品過程中記錄的產量x(噸)與相應的生產能耗y(噸標準煤)的幾組對應數據.
(1)請根據上表提供的數據,用最小二乘法求出y關于x的線性回歸方程y=bx+a;
(2)已知該企業技改前100噸甲產品的生產能耗為90噸標準煤,試根據(1)求出的線性回歸方程,預測生產100噸甲產品的生產能耗比技改前降低了多少噸標準煤?
(參考數值:3×2.5+4×3+5×4+6×4.5=66.5)參考公式:=
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點F為橢圓 的左焦點,且兩焦點與短軸的一個頂點構成一個等邊三角形,直線
與橢圓E有且僅有一個交點M. (Ⅰ)求橢圓E的方程;
(Ⅱ)設直線 與y軸交于P,過點P的直線與橢圓E交于兩不同點A,B,若λ|PM|2=|PA||PB|,求實數λ的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com