精英家教網 > 高中數學 > 題目詳情

已知,函數.
(1)如果時,恒成立,求m的取值范圍;
(2)當時,求證:.

(1),(2)詳見解析.

解析試題分析:(1)轉化為恒成立,求的最大值;通過導數確定函數的單調性,利用單調性求出函數的最大值,;令,通過求其導數,通過導數的正負,判定函數的單調性,從而求出其最大值;
(2)首先利用分析法將所要證不等式,逐步分析,找到證明其成立的充分條件,即,設函數,利用導數找到其最小值,證明其最小值也大于0,則不等式成立.中檔偏難.
試題解析:(1),,.
),遞減,
,∴m的取值范圍是.      5分
(2)證明:當時,的定義域
,要證,只需證
又∵,∴只需證,      8分
即證
遞增,,
∴必有,使,即
且在上,;在上,,

,即      12分
考點:1.函數恒成立問題;2.證明不等式的方法;3.利用導數求函數的最小值.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數的圖象在點處的切線方程為
.
(1)求實數的值;
(2)設.
①若上的增函數,求實數的最大值;
②是否存在點,使得過點的直線若能與曲線圍成兩個封閉圖形,則這兩個封閉圖形的面積總相等.若存在,求出點坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,.
(1)若存在,使得,求a的取值范圍;
(2)若有兩個不同的實數解,證明:.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)求函數上的最大值與最小值;
(2)若時,函數的圖像恒在直線上方,求實數的取值范圍;
(3)證明:當時,

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知
(1)若方程有3個不同的根,求實數的取值范圍;
(2)在(1)的條件下,是否存在實數,使得上恰有兩個極值點,且滿足,若存在,求實數的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,其中ma均為實數.
(1)求的極值;
(2)設,若對任意的,恒成立,求的最小值;
(3)設,若對任意給定的,在區間上總存在,使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知曲線.
(1)求曲線在點()處的切線方程;
(2)若存在使得,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數.
(1)求函數的極小值;
(2)求函數的遞增區間.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

一個圓柱形圓木的底面半徑為1m,長為10m,將此圓木沿軸所在的平面剖成兩個部分.現要把其中一個部分加工成直四棱柱木梁,長度保持不變,底面為等腰梯形(如圖所示,其中O為圓心,在半圓上),設,木梁的體積為V(單位:m3),表面積為S(單位:m2).

(1)求V關于θ的函數表達式;
(2)求的值,使體積V最大;
(3)問當木梁的體積V最大時,其表面積S是否也最大?請說明理由.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视