精英家教網 > 高中數學 > 題目詳情

已知
(1)若方程有3個不同的根,求實數的取值范圍;
(2)在(1)的條件下,是否存在實數,使得上恰有兩個極值點,且滿足,若存在,求實數的值,若不存在,說明理由.

(1);(2)不存在,參考解析

解析試題分析:(1)由已知),若方程有3個不同的根,則可得到對兩個方程分別討論即可到結論.
(2)在(1)的條件下,是否存在實數,使得上恰有兩個極值點,通過對函數求導,判斷導函數的根的情況,通過換元使得等式簡潔些.要滿足,由于,所以可得,通過驗證根是否存在.即可得到結論.
試題解析:(1)解:由得:
可得
∵方程有3個不同的根,
∴方程有兩個不同的根

又∵,且要保證能取到0∴

(2)解:∵
,設




,
∴存在,使得,另外有,使得
假設存在實數,使得上恰有兩個極值點,且滿足
則存在,使得,另外有,即
,∴,即
(*)



上是增函數

∴方程(*)無解,
即不存在實數,使得上恰有兩個極值點,且滿足
考點:1.函數與x軸的交點與方程的根的問題.2.函數的極值.3.等價轉化的思想.4.函數的最值問題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數
(1)當時,求函數的單調增區間;
(2)當時,求函數在區間上的最小值;
(3)記函數圖象為曲線,設點,是曲線上不同的兩點,點為線段的中點,過點軸的垂線交曲線于點.試問:曲線在點處的切線是否平行于直線?并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)若曲線在點處的切線與直線平行,求的值;
(2)求證函數上為單調增函數;
(3)設,,且,求證:

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知數列的前項和為,且,對任意,都有.
(1)求數列的通項公式;
(2)若數列滿足,求數列的前項和.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,(其中常數
(1)當時,求曲線在處的切線方程;
(2)若存在實數使得不等式成立,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知,函數.
(1)如果時,恒成立,求m的取值范圍;
(2)當時,求證:.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,其中m,a均為實數.
(1)求的極值;
(2)設,若對任意的,恒成立,求的最小值;
(3)設,若對任意給定的,在區間上總存在,使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=-x3+ax2-4(),是f(x)的導函數.
(1)當a=2時,對任意的的最小值;
(2)若存在使f(x0)>0,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數與函數在點處有公共的切線,設.
(1) 求的值
(2)求在區間上的最小值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视