【題目】在直角坐標系中,已知圓C的圓心坐標為(2,0),半徑為 ,以坐標原點為極點,x軸的正半軸為極軸建立極坐標系.,直線l的參數方程為:
(t為參數).
(1)求圓C和直線l的極坐標方程;
(2)點P的極坐標為(1, ),直線l與圓C相交于A,B,求|PA|+|PB|的值.
【答案】
(1)解:圓C的直角坐標方程為(x﹣2)2+y2=2,
代入圓C得:(ρcosθ﹣2)2+ρ2sin2θ=2
化簡得圓C的極坐標方程:ρ2﹣4ρcosθ+2=0
由 得x+y=1,∴l的極坐標方程為ρcosθ+ρsinθ=1
(2)解:由 得點P的直角坐標為P(0,1),
∴直線l的參數的標準方程可寫成
代入圓C得:
化簡得: ,
∴ ,∴t1<0,t2<0
∴
【解析】(1) 代入圓C得圓C的極坐標方程;直線l的參數方程轉化成普通方程,進而求得直線l的極坐標方程;(2)將直線l的參數方程代入圓的方程,求得關于t的一元二次方程,令A,B對應參數分別為t1 , t2 , 根據韋達定理、直線與圓的位置關系,即可求得|PA|+|PB|的值.
科目:高中數學 來源: 題型:
【題目】四棱錐S-ABCD的底面ABCD為直角梯形,AB∥CD,AB⊥BC,AB=2BC=2CD=2,△SAD為正三角形.
(Ⅰ)點M為棱AB上一點,若BC∥平面SDM,AM=λAB,求實數λ的值;
(Ⅱ)若BC⊥SD,求二面角A-SB-C的余弦值.
【答案】(Ⅰ)(Ⅱ)
【解析】
(Ⅰ)由線面平行的性質定理可得,據此可知四邊形BCDM為平行四邊形,據此可得
.
(Ⅱ)由幾何關系,在平面內過點
作
直線
于點
,以點E為坐標原點,EA方向為X軸,EC方向為Y軸,ES方向為Z軸建立空間坐標系,據此可得平面
的一個法向量
,平面
的一個法向量
,據此計算可得二面角
余弦值為
.
(Ⅰ)因為平面SDM,
平面ABCD,平面SDM
平面ABCD=DM,所以
,
因為,所以四邊形BCDM為平行四邊形,又
,所以M為AB的中點.
因為
.
(Ⅱ)因為
,
,所以
平面
,又因為
平面
,
所以平面平面
,平面
平面
,
在平面內過點
作
直線
于點
,則
平面
,
在和
中,因為
,所以
,
又由題知,所以
所以
,
以下建系求解.以點E為坐標原點,EA方向為X軸,EC方向為Y軸,ES方向為Z軸建立如圖所示空間坐標系,
則,
,
,
,
,
,
,
,
,
設平面的法向量
,則
,所
,
令得
為平面
的一個法向量,
同理得為平面
的一個法向量,
,因為二面角
為鈍角.
所以二面角余弦值為
.
【點睛】
本題考查了立體幾何中的判斷定理和二面角的求解問題,意在考查學生的空間想象能力和邏輯推理能力;解答本題關鍵在于能利用直線與直線、直線與平面、平面與平面關系的相互轉化,通過嚴密推理,明確角的構成.同時對于立體幾何中角的計算問題,往往可以利用空間向量法,通過求解平面的法向量,利用向量的夾角公式求解.
【題型】解答題
【結束】
19
【題目】小明在石家莊市某物流派送公司找到了一份派送員的工作,該公司給出了兩種日薪薪酬方案.甲方案:底薪100元,每派送一單獎勵1元;乙方案:底薪140元,每日前55單沒有獎勵,超過55單的部分每單獎勵12元.
(Ⅰ)請分別求出甲、乙兩種薪酬方案中日薪y(單位:元)與送貨單數n的函數關系式;
(Ⅱ)根據該公司所有派送員100天的派送記錄,發現派送員的日平均派送單數滿足以下條件:在這100天中的派送量指標滿足如圖所示的直方圖,其中當某天的派送量指標在(,
](n=1,2,3,4,5)時,日平均派送量為50+2n單.若將頻率視為概率,回答下列問題:
①根據以上數據,設每名派送員的日薪為X(單位:元),試分別求出甲、乙兩種方案的日薪X的分布列,數學期望及方差;
②結合①中的數據,根據統計學的思想,幫助小明分析,他選擇哪種薪酬方案比較合適,并說明你的理由。
(參考數據:0.62=0.36,1.42=1.9 6,2.6 2=6.76,3.42=1 1.56,3.62=12.96,4.62=21.16,15.62=243.36,20.42=416.16,44.42=1971.36)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=|x﹣a|+|x+2|.
(1)當a=1 時,求不等式f(x)≤5的解集;
(2)x0∈R,f(x0)≤|2a+1|,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某機構為了研究人的腳的大小與身高之間的關系,隨機測量了20人,得到如下數據:
(1) 若“身高大于175厘米”的為“高個”,“身高小于等于175厘米”的為“非高個”;“腳長大于42碼”的為“大腳”,“腳長小于等于42碼”的為“非大腳”,請根據上表數據完成下面的2×2列聯表.
(2)根據(1)中的2×2列聯表,在犯錯誤的概率不超過0.01的前提下,能否認為腳的大小與身高之間有關系?
,
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某商場銷售某種品牌的空調器,每周周初購進一定數量的空調器,商場每銷售一臺空調器可獲利500元,若供大于求,則每臺多余的空調器需交保管費100元;若供不應求,則可從其他商店調劑供應,此時每臺空調器僅獲利潤200元.
(Ⅰ)若該商場周初購進20臺空調器,求當周的利潤(單位:元)關于當周需求量n(單位:臺,n∈N)的函數解析式f(n);
(Ⅱ)該商場記錄了去年夏天(共10周)空調器需求量n(單位:臺),整理得表:
周需求量n | 18 | 19 | 20 | 21 | 22 |
頻數 | 1 | 2 | 3 | 3 | 1 |
以10周記錄的各需求量的頻率作為各需求量發生的概率,若商場周初購進20臺空調器,X表示當周的利潤(單位:元),求X的分布列及數學期望.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com