【題目】某園林基地培育了一種新觀賞植物,經過了一年的生長發育,技術人員從中抽取了部分植株的高度(單位:厘米)作為樣本(樣本容量為)進行統計,按
分組做出頻率分布直方圖,并作出樣本高度的莖葉圖(圖中僅列出了高度在
的數據).
(1)求樣本容量和頻率分布直方圖中的
(2)在選取的樣本中,從高度在80厘米以上(含80厘米)的植株中隨機抽取3株,設隨機變量表示所抽取的3株高度在
內的株數,求隨機變量
的分布列及數學期望.
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,橢圓E: =1(a>b>0)的離心率為
,焦距為2.(14分)
(Ⅰ)求橢圓E的方程.
(Ⅱ)如圖,該直線l:y=k1x﹣ 交橢圓E于A,B兩點,C是橢圓E上的一點,直線OC的斜率為k2 , 且看k1k2=
,M是線段OC延長線上一點,且|MC|:|AB|=2:3,⊙M的半徑為|MC|,OS,OT是⊙M的兩條切線,切點分別為S,T,求∠SOT的最大值,并求取得最大值時直線l的斜率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在矩形ABCD中,AB=1,AD=2,動點P在以點C為圓心且與BD相切的圓上.若 =λ
+μ
,則λ+μ的最大值為( )
A.3
B.2
C.
D.2
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知袋子中放有大小和形狀相同的小球若干,其中標號為0的小球1個,標號為1的小球1個,標號為2的小球n個.若從袋子中隨機抽取1個小球,取到標號為2的小球的概率是.
(1)求n的值;
(2)從袋子中不放回地隨機抽取2個小球,記第一次取出的小球標號為a,第二次取出的小球標號為b.
①記“”為事件A,求事件A的概率;
②在區間內任取2個實數
,求事件“
恒成立”的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知四棱錐P-ABCD的底面為等腰梯形, AB∥CD,AC⊥BD,垂足為H, PH是四棱錐的高,E為AD中點,設
1)證明:PE⊥BC;
2)若∠APB=∠ADB=60°,求直線PA與平面PEH所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x3+ax2+bx+1(a>0,b∈R)有極值,且導函數f′(x)的極值點是f(x)的零點.(極值點是指函數取極值時對應的自變量的值)
(Ⅰ)求b關于a的函數關系式,并寫出定義域;
(Ⅱ)證明:b2>3a;
(Ⅲ)若f(x),f′(x)這兩個函數的所有極值之和不小于﹣ ,求a的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com