【題目】已知函數f(x)=lnx﹣ ax2+x,a∈R.
(1)若f(1)=0,求函數f(x)的最大值;
(2)令g(x)=f(x)﹣(ax﹣1),求函數g(x)的單調區間;
(3)若a=﹣2,正實數x1 , x2滿足f(x1)+f(x2)+x1x2=0,證明x1+x2≥ .
【答案】
(1)解:因為f(1)= ,所以a=2.
此時f(x)=lnx﹣x2+x,x>0,
,
由f'(x)=0,得x=1,所以f(x)在(0,1)上單調遞增,在(1,+∞)上單調遞減,
故當x=1時函數有極大值,也是最大值,所以f(x)的最大值為f(1)=0.
(2)解: ,
所以 .
當a≤0時,因為x>0,所以g′(x)>0.
所以g(x)在(0,+∞)上是遞增函數,
當a>0時, ,
令g′(x)=0,得 .
所以當 時,g′(x)>0;當
時,g′(x)<0,
因此函數g(x)在 是增函數,在
是減函數.
綜上,當a≤0時,函數g(x)的遞增區間是(0,+∞),無遞減區間;
當a>0時,函數g(x)的遞增區間是 ,遞減區間是
.
(3)解:由x1>0,x2>0,即x1+x2>0.
令t=x1x2,則由x1>0,x2>0得, .t>0
可知,φ(t)在區間(0,1)上單調遞減,在區間(1,+∞)上單調遞增.
所以φ(t)≥φ(1)=1,
所以 ,解得
或
.
又因為x1>0,x2>0,
因此 成立.
【解析】(1)先求出a的值,然后求原函數的極值即可;(2)求導數,然后通過研究不等式的解集確定原函數的單調性;(3)結合已知條件構造函數,然后結合函數單調性得到要證的結論.
科目:高中數學 來源: 題型:
【題目】已知橢圓Γ: +
=1(a>b>0)的右焦點與短軸兩端點構成一個面積為2的等腰直角三角形,O為坐標原點:
(1)求橢圓Г的方程:
(2)設點A在橢圓Г上,點B在直線y=2上,且OA⊥OB,求證: +
為定值:
(3)設點C在Γ上運動,OC⊥OD,且點O到直線CD距離為常數d(0<d<2),求動點D的軌跡方程:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是平行四邊形,∠BCD=135°,側面PAB⊥底面ABCD,∠BAP=90°,AB=AC=PA=2,E,F分別為BC,AD的中點,點M在線段PD上.
(1)求證:EF⊥平面PAC;
(2)如果直線ME與平面PBC所成的角和直線ME與平面ABCD所成的角相等,求 的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知a,b,c分別是△ABC的內角A,B,C的對邊,sin2B=2sinAsinC.
(1)若a=b,求cosB的值;
(2)若B=60°,△ABC的面積為4 ,求b的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為矩形,PA⊥平面ABCD,AB=PA=1,AD= ,F是PB中點,E為BC上一點.
(1)求證:AF⊥平面PBC;
(2)當BE為何值時,二面角C﹣PE﹣D為45°.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題滿分14分)
設△ABC三個內角A、B、C所對的邊分別為a,b,c. 已知C=,acosA=bcosB.
(1)求角A的大;
(2)如圖,在△ABC的外角∠ACD內取一點P,使得PC=2.過點P分別作直線CA、CD的垂線PM、PN,垂足分別是M、N.設∠PCA=α,求PM+PN的最大值及此時α的取值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com