精英家教網 > 高中數學 > 題目詳情

【題目】甲、乙兩人進行射擊比賽,各射擊局,每局射擊次,射擊命中目標得分,未命中目標得分,兩人局的得分情況如下:

)若從甲的局比賽中,隨機選取局,求這局的得分恰好相等的概率.

)如果,從甲、乙兩人的局比賽中隨機各選取局,記這局的得分和為,求的分布列和數學期望.

)在局比賽中,若甲、乙兩人的平均得分相同,且乙的發揮更穩定,寫出的所有可能取值.(結論不要求證明)

【答案】見解析的可能值為, ,

【解析】試題分析:(1)從甲的4局比賽中,隨機選取2局的情況有種情況,然后分析得分情況相同的情況,即可求出其概率;

(2)分析出的所有可能取值,然后分別求出其概率即可求出分布列和數學期望;

(3)由甲、乙兩人的平均得分相同,且乙的發揮更穩定,能寫出x的所有可能.

試題解析:)由已知可得從甲的局的比賽中,隨機選取局的情況有種,

得分恰好相等的有種,所以這局的得分恰好相等的概率為

)當時, 的可能取值有, , ,

所以 ,

, ,

所以的分布列為:

的可能值為 ,

點晴:求解離散型隨機變量的數學期望的一般步驟為:

第一步是“判斷取值”,即判斷隨機變量的所有可能取值,以及取每個值所表示的意義;

第二步是“探求概率”,即利用排列組合,枚舉法,概率公式(常見的有古典概型公式、幾何概率公式、互斥事件的概率和公式、獨立事件的概率積,以及對立事件的概率公式等),求出隨機變量取每個值時的概率;

第三步是“寫分布列”,即按規范形式寫出分布列,并注意用分布列的性質檢驗所求的分布列或某事件的概率是否正確;

第四步是“求期望值”,一般利用離散型隨機變量的數學期望的定義求期望的值.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知下列命題:

①命題“, ”的否定是:“, ;

若樣本數據的平均值和方差分別為則數據的平均值和標準差分別為, ;

③兩個事件不是互斥事件的必要不充分條件是兩個事件不是對立事件;

④在列聯表中,若比值相差越大,則兩個分類變量有關系的可能性就越大

⑤已知為兩個平面,且, 為直線.則命題:“若的逆命題和否命題均為假命題

⑥設定點、,動點滿足條件為正常數),則的軌跡是橢圓.其中真命題的個數為( )

A. 5 B. 4 C. 3 D. 2

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知某公司生產某產品的年固定成本為100萬元,每生產1千件需另投入27萬元,設該公司一年內生產該產品千件并全部銷售完,每千件的銷售收入為萬元,且.

⑴ 寫出年利潤(萬元)關于年產量(千件)的函數解析式;

⑵ 當年產量為多少千件時,該公司在這一產品的生產中所獲年利潤最大?(注:年利潤=年銷售收入年總成本).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】圖,已知四棱錐中,底面為菱形,平面,,,分別是的中點.

I)證明:平面;

II)取,在線段上是否存在點,使得與平面所成最大角的正切值為,若存在,請求出點的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,已知橢圓 的離心率,且橢圓上一點到點的距離最大值為4,過點的直線交橢圓于點.

(1)求橢圓的方程;

(2)設為橢圓上一點,且滿足為坐標原點),當時,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某大型娛樂場有兩種型號的水上摩托,管理人員為了了解水上摩托的使用及給娛樂城帶來的經濟收入情況,對該場所最近6年水上摩托的使用情況進行了統計,得到相關數據如表:

年份

2011

2012

2013

2014

2015

2016

年份代碼

1

2

3

4

5

6

使用率

11

13

16

15

20

21

(1)請根據以上數據,用最小二乘法求水上摩托使用率關于年份代碼的線性回歸方程,并預測該娛樂場2018年水上摩托的使用率;

(2)隨著生活水平的提高,外出旅游的老百姓越來越多,該娛樂場根據自身的發展需要,準備重新購進一批水上摩托,其型號主要是目前使用的Ⅰ型、Ⅱ型兩種,每輛價格分別為1萬元、1.2萬元.根據以往經驗,每輛水上摩托的使用年限不超過四年.娛樂場管理部對已經淘汰的兩款水上摩托的使用情況分別抽取了50輛進行統計,使用年限如條形圖所示:

已知每輛水上摩托從購入到淘汰平均年收益是0.8萬元,若用頻率作為概率,以每輛水上摩托純利潤(純利潤收益購車成本)的期望值為參考值,則該娛樂場的負責人應該選購Ⅰ型水上摩托還是Ⅱ型水上摩托?

附:回歸直線方程為,其中, .

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某城市隨機抽取一年(365天)內100天的空氣質量指數API的監測數據,結果統計如下:

記某企業每天由空氣污染造成的經濟損失T(單位:元),空氣質量指數API.在區間[0,100]對企業沒有造成經濟損失;在區間(100,300]對企業造成經濟損失成直線模型(當API150時造成的經濟損失為200元,當API200時,造成的經濟損失為400元);當API大于300時造成的經濟損失為2000.

(1)試寫出函數T()的表達式:

(2)試估計在本年內隨機抽取一天,該天經濟損失大于200元且不超過600元的概率;

(3)若本次抽取的樣本數據有30天是在供暖季,其中有8天為重度污染,完成下面2×2列聯表,并判斷能否有95%的把握認為該市本年空氣重度污染與供暖有關.

非重度污染

重度污染

合計

供暖季

非供暖季

合計

100

附:

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在直角梯形中, , .直角梯形可以通過直角梯形以直線為軸旋轉得到,且平面平面

[Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2017/12/20/1842736631291904/1845869604462592/STEM/592e486e595e40bf846fae2bfa16ac59.png]

I)求證:

II)求直線和平面所成角的正弦值.

III)設的中點, , 分別為線段, 上的點(都不與點重合).若直線平面,求的長.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)當時,求函數上的最小值;

(2)若,不等式恒成立,求的取值范圍;

(3)若,不等式恒成立,求的取值范圍

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视