(08年新建二中六模) 如圖,等腰直角△中,
,
平面
,
∥
,
.
(Ⅰ)求二面角的正弦值;
(Ⅱ)求點到平面
的距離;
(Ⅲ)證明五點在同一個球面上,并求
兩點的球面距離.
解析:方法一
(Ⅰ)取的中點
,連結
,由
知
,又
,故
,所以
即為二面角
的平面角.
在△中,
,
,
,
由余弦定理有
,
所以二面角的正弦值為
(Ⅱ)由(Ⅰ)知道平面
,故平面
平面
,故
在平面
上的射影一定在直線
上,所以點
到平面
的距離即為△
的邊
上的高.
故.
(Ⅲ)易證△為直角三角形,且
,取
的中點
,則由四邊形
是矩形知
,故五點
在以
為球心,
為直徑的球面上,故
兩點之間的球面距離就是半個大圓的弧長,是
方法二
以點為坐標原點,以過
垂直于
的直線為
軸,以
所在直線為
軸,
為
軸建立空間直角坐標系
,如圖所示.
(Ⅰ)則,
,
,
,設
是平面的法向量,則有
,即
,取
,
得,易知平面
的一個法向量為
,
,故所求角的正弦值為
.
(Ⅱ),故點
到平面
的距離為
.
(Ⅲ)易知的中點
的坐標為
,故
,
而,故五點
在以
為球心,
為直徑的球面上,故
兩點之間的球面距離就是半個大圓的弧長,是
科目:高中數學 來源: 題型:
(08年新建二中六模) 已知雙曲線,過上焦點F2的直線與上支交于A、B兩點,且線段AF2、BF2的長度分別為m、n.
(1)證明mn≥1;
(2)若m>n,當直線AB的斜率時,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
(08年新建二中六模理)有一種密碼,明文是由三個字符組成,密碼是由明文對應的五個數字組成,編碼規則如下表:明文由表中每一排取一個字符組成,且第一排取的字符放在第一位,第二排取的字符放在第二位,第三排取的字符放在第三位,對應的密碼由明文對應的數字按相同的次序排成一組成.
第一排 | 明文字符 | A | B | C | D |
密碼字符 | 11 | 12 | 13 | 14 | |
第二排 | 明文字符 | E | F | G | H |
密碼字符 | 21 | 22 | 23 | 24 | |
第三排 | 明文字符 | M | N | P | Q |
密碼字符 | 1 | 2 | 3 | 4 |
設隨機變量ξ表示密碼中不同數字的個數.
(Ⅰ)求P(ξ=2)
(Ⅱ)求隨機變量ξ的分布列和它的數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
(08年新建二中六模) 若函數的圖像與直線
相切,并且切點的橫坐標依次成公差為
的等差數列.
(Ⅰ)求m的值;
(Ⅱ)若點是
圖像的對稱中心,且
[0,
],求點A的坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com