精英家教網 > 高中數學 > 題目詳情

【題目】已知

(1)如果函數的單調遞減區間為,求函數的解析式;

(2)在(1)的條件下,求函數的圖象在點處的切線方程

(3)已知不等式恒成立,若方程恰有兩個不等實根,求的取值范圍

答案】(1);(2);(3)

【解析】

試題分析:(1)的解集為的兩根分別是,(2)由(1)知

處的切線斜率函數的圖象在點處的切線方程為;(3)由題意知上恒成立,設,再由導數工具取得 遞減遞增,,,只需

試題解析: (1)

由題意的解集為,

的兩根分別是,

代入得,

(2)由(1)知,,,

處的切線斜率

函數的圖象在點處的切線方程為,

(3)由題意知上恒成立,

可得上恒成立,

,

(舍),

,,,

取得最大值,

,所以遞減,遞增

,,

所以要把方程恰有兩個不等實根,只需

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知關于x的不等式組

(1) 若k=1,求不等式組的解集;

(2) 若不等式組的整數解的集合為{-2},求實數k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

(Ⅰ)求函數的單調區間;

(Ⅱ)若,不等式恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列{an}的前n項和為Sn,S1=-,an-4SnSn-1=0(n≥2).

(1) 若bn,求證:{bn}是等差數列;

(2) 求數列{an}的通項公式.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】天水市第一次聯考后,某校對甲、乙兩個文科班的數學考試成績進行分析,

規定:大于或等于120分為優秀,120分以下為非優秀.統計成績后,

得到如下的列聯表,且已知在甲、乙兩個文科班全部110人中隨機抽取1人為優秀的概率為.

優秀

非優秀

合計

甲班

10

乙班

30

合計

110

(1)請完成上面的列聯表;

(2)根據列聯表的數據,若按99.9%的可靠性要求,能否認為成績與班級有關系;

(3)若按下面的方法從甲班優秀的學生中抽取一人:把甲班優秀的10名學生從2到11進行編號,先后兩次拋擲一枚均勻的骰子,出現的點數之和為被抽取人的序號。試求抽到9號或10號的概率。

參考公式與臨界值表:。

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數是偶函數.

(1)求的值;

(2)若函數的圖象與直線沒有交點,求b的取值范圍;

(3)設,若函數的圖象有且只有一個公共點,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在四棱錐中,為正三角形,平面平面,,.

1)求證:平面平面;

2)求三棱錐的體積;

3)在棱上是否存在點,使得平面?若存在,請確定點的位置并證明;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=x2+1,x∈R.

(1)分別計算f(1)-f(-1),f(2)-f(-2),f(3)-f(-3)的值;

(2)由(1)你發現了什么結論?并加以證明.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,對任意實數, .

1上是單調遞減的,求實數的取值范圍;

2)若對任意恒成立,求正數的取值范圍.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视