【題目】平面直角坐標系中,直線l的參數方程 (t為參數),以坐標原點為極點,x軸的正半軸為極軸,建立極坐標系,已知曲線C的極坐標方程為p2cos2θ+p2sinθ﹣2psinθ﹣3=0
(1)求直線l的極坐標方程;
(2)若直線l與曲線C相交于A,B兩點,求|AB|.
科目:高中數學 來源: 題型:
【題目】觀察下列方程,并回答問題:
①;②
;③
;④
;…
(1)請你根據這列方程的特點寫出第個方程;
(2)直接寫出第2009個方程的根;
(3)說出這列方程的根的一個共同特點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知正項等比數列{an}前n項和為Sn , 且滿足S3= ,a6 , 3a5 , a7成等差數列. (Ⅰ)求數列{an}的通項公式;
(Ⅱ)設數列bn= ,且數列bn的前n項的和Tn , 試比較Tn與
的大。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x2+a(x+lnx),a∈R. (Ⅰ)若當a=﹣1時,求f(x)的單調區間;
(Ⅱ)若f(x)> (e+1)a,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖4,四邊形ABCD為菱形,∠ABC=60°.PA⊥平面ABCD,E為PC中點.
(Ⅰ)求證:平面BED⊥平面ABCD;
(Ⅱ)求平面PBA與平面EBD所成二面角(銳角)的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設等差數列{an}的前n項和為Sn , 且a2=8,S4=40.數列{bn}的前n項和為Tn , 且Tn﹣2bn+3=0,n∈N* .
(Ⅰ)求數列{an},{bn}的通項公式;
(Ⅱ)設cn= , 求數列{cn}的前n項和Pn .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com