【題目】設a1=2,an+1= ,bn=|
|,n∈N* , 則數列{bn}的通項公式bn= .
【答案】2n+1 , n∈N*
【解析】解:a1=2,an+1= ,bn=|
|,n∈N,當n=1時,b1=
=4=22 , a2=
=
,
當n=2時,b2= =8=23 , a3=
=
,
當n=3時,b3=| |=16=24 , a4=
=
,
則b3=32=24 ,
由此猜想bn=2n+1 ,
用數學歸納法證明,①當n=1時,成立,
②假設當n=k時成立,即bk+1=2k+2 ,
∵ak+1= ,bk=|
|,
∴bk+1=| |=|
|=|
|=2bk=2k+2 ,
故當n=k+1時猜想成立,
由①②可知,bn=2n+1 , n∈N* .
所以答案是:2n+1 , n∈N* .
【考點精析】根據題目的已知條件,利用數列的通項公式的相關知識可以得到問題的答案,需要掌握如果數列an的第n項與n之間的關系可以用一個公式表示,那么這個公式就叫這個數列的通項公式.
科目:高中數學 來源: 題型:
【題目】如圖所示,在三棱錐P -ABC中,PA⊥底面ABC,∠BCA90°,AP
AC,點D,E分別在棱PB,PC上,且BC∥平面ADE.
(Ⅰ)求證:DE⊥平面PAC;
(Ⅱ)若PC⊥AD,且三棱錐P-ABC的體積為8,求多面體ABCED的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題滿分12分) 某中學的環保社團參照國家環境標準制定了該校所在區域空氣質量指數與空氣質量等級對應關系如下表(假設該區域空氣質量指數不會超過):
空氣質量指數 | ||||||
空氣質量等級 |
|
|
|
|
|
|
該社團將該校區在年
天的空氣質量指數監測數據作為樣本,繪制的頻率分布直方圖如下圖,把該直方圖所得頻率估計為概率.
(Ⅰ)請估算年(以
天計算)全年空氣質量優良的天數(未滿一天按一天計算);
(Ⅱ)該校年
月
、
日將作為高考考場,若這兩天中某天出現
級重度污染,需要凈化空氣費用
元,出現
級嚴重污染,需要凈化空氣費用
元,記這兩天凈化空氣總費用為
元,求
的分布列及數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】
如圖,平面PAC⊥平面ABC,△ABC是以AC為斜邊的等腰直角三角形,E,F,O分別為PA,PB,AC的中點,AC=16,PA=PC=10.
(Ⅰ)設G是OC的中點,證明:FG∥平面BOE;
(Ⅱ)證明:在△ABO內存在一點M,使FM⊥平面BOE,并求點M到OA,OB的距離.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的中心在坐標原點
,焦點在
軸上,橢圓
的短軸端點和焦點所組成的四邊形為正方形,且橢圓
上任意一點到兩個焦點的距離之和為
.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)若直線與橢圓
相交于
兩點,求
面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,某幾何體的三視圖中,俯視圖是邊長為2的正三角形,正視圖和左視圖分別為直角梯形和直角三角形,則該幾何體的體積為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖(1)所示,已知四邊形是由直角△
和直角梯形
拼接而成的,其中
.且點
為線段
的中點,
,
現將△
沿
進行翻折,使得二面角
的大小為
,得到圖形如圖(2)所示,連接
,點
分別在線段
上.
(1)證明: ;
(2)若三棱錐的體積為四棱錐
體積的
,求點
到平面
的距離.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com