精英家教網 > 高中數學 > 題目詳情

已知函數f(x)=+ln x(a≠0,a∈R).求函數f(x)的極值和單調區間.

的極小值為1;單調遞增區間為,單調遞減區間為。

解析試題分析:先求導并整理變形,再令導數等于0,并求根。討論導數的正負,導數大于0得增區間,導數小于0得減區間,根據單調性可得函數的極值。
因為,
,得,
的定義域為,
隨x的變化情況如下表:

所以時,的極小值為1.
的單調遞增區間為,單調遞減區間為
考點:用導數研究函數的單調性和極值。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

(10分)已知函數,設的導數,
(1)求的值;
(2)證明:對任意,等式都成立.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數,其中為實數,若上是單調減函數,且上有最小值,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,已知二次函數的圖像過點,直線,直線(其中為常數);若直線與函數的圖像以及直線與函數以及的圖像所圍成的封閉圖形如陰影所示.
(1)求
(2)求陰影面積關于的函數的解析式;
(3)若過點可作曲線的三條切線,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=xlnx-x2.
(1)當a=1時,函數y=f(x)有幾個極值點?
(2)是否存在實數a,使函數f(x)=xlnx-x2有兩個極值?若存在,求實數a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數R),為其導函數,且有極小值
(1)求的單調遞減區間;
(2)若,當時,對于任意x,的值至少有一個是正數,求實數m的取值范圍;
(3)若不等式為正整數)對任意正實數恒成立,求的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)當時,求函數單調區間;
(2)若函數在區間[1,2]上的最小值為,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知
(1)若曲線處的切線與直線平行,求a的值;
(2)當時,求的單調區間.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知
(1)若,求曲線在點處的切線方程;
(2)若 求函數的單調區間;
(3)若不等式恒成立,求實數的取值范圍.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视