【題目】已知點F是拋物線C:y2=2px(p>0)的焦點,過點F的直線與拋物線相交于A,B兩點(點A在x軸上方),與y軸的正半軸相交于點N,點Q是拋物線不同于A,B的點,若2,則|BF|:|BA|:|BN|=_____.
科目:高中數學 來源: 題型:
【題目】設點M是棱長為2的正方體ABCD-A1B1C1D1的棱AD的中點,點P在面BCC1B1所在的平面內,若平面D1PM分別與平面ABCD和平面BCC1B1所成的銳二面角相等,則點P到點C1的最短距離是( )
A.B.
C.1D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】雙曲線C的漸近線方程為,一個焦點為F(0,﹣8),則該雙曲線的標準方程為_____.已知點A(﹣6,0),若點P為C上一動點,且P點在x軸上方,當點P的位置變化時,△PAF的周長的最小值為_____.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】動圓與圓
外切,并與直線
相切,則動圓圓心
的軌跡方程為__________,過點
作傾斜角互補的兩條直線,分別與圓心
的軌跡相交于
,
兩點,則直線
的斜率為__________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓經過點
,離心率為
(1)求橢圓的方程;
(2)設直線與橢圓
相交于
,
兩點,若以
,
為鄰邊的平行四邊形
的頂點
在橢圓
上,求證:平行四邊形
的面積為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,是以
為斜邊的等腰直角三角形,
中
,
沿著
翻折成三棱錐
的過程中,直線
與平面
所成的角均小于直線
與平面
所成的角,設二面角
,
的大小分別為
,
,則( ).
A.B.
C.存在D.
,
的大小關系不能確定
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知三棱臺的下底面
是邊長為2的正三角形,上地面
是邊長為1的正三角形.
在下底面的射影為
的重心,且
.
(1)證明:平面
;
(2)求直線與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,直線
的參數方程為
(
為參數),在以坐標原點
為極點、以
軸正半軸為極軸的極坐標系中,曲線
的極坐標方程為
,若直線
與曲線
交于
、
兩點.
(1)求線段的中點
的直角坐標;
(2)設點是曲線
上任意一點,求
面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,在四邊形ABCD中,∠ABC=,AB=4,BC=3,CD=
,AD=2
,PA=4.
(1)證明:CD⊥平面PAD;
(2)求二面角B-PC-D的余弦值..
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com