【題目】若存在實數使得
則稱
是區間
的
一內點.
(1)求證:的充要條件是存在
使得
是區間
的
一內點;
(2)若實數滿足:
求證:存在
,使得
是區間
的
一內點;
(3)給定實數,若對于任意區間
,
是區間的
一內點,
是區間的
一內點,且不等式
和不等式
對于任意
都恒成立,求證:
科目:高中數學 來源: 題型:
【題目】平面直角坐標系中,已知橢圓
的離心率為
,左、右焦點分別是
,以
為圓心以3為半徑的圓與以
為圓心以1為半徑的圓相交,且交點在橢圓
上.
(Ⅰ)求橢圓的方程;
(Ⅱ)設橢圓,
為橢圓
上任意一點,過點
的直線
交橢圓
于
兩點,射線
交橢圓
于點
.
(i)求的值;
(ⅱ)求面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】東海水晶制品廠去年的年產量為10萬件,每件水晶產品的銷售價格為100元,固定成本為80元.從今年起,工廠投入100萬元科技成本,并計劃以后每年比上一年多投入100萬元科技成本.預計產量每年遞增1萬件,每件水晶產品的固定成本與科技成本的投入次數
的關系是
=
.若水晶產品的銷售價格不變,第
次投入后的年利潤為
萬元.①求出
的表達式;②問從今年算起第幾年利潤最高?最高利潤為多少萬元?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點到點
的距離比它到直線
距離小
(Ⅰ)求點的軌跡
的方程;
(Ⅱ)過點作互相垂直的兩條直線
,它們與(Ⅰ)中軌跡
分別交于點
及點
,且
分別是線段
的中點,求
面積的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知,
為兩個不同的平面,
,
為兩條不同的直線,有以下命題:
①若,
,則
.②若
,
,則
.③若
,
,則
.④若
,
,
,則
.
其中真命題有()
A.①②B.①③C.②③D.③④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某工廠生產一種儀器的元件,由于受生產能力和技術水平的限制,會產生一些次品,根據經驗知道,其次品率與日產量
(萬件)之間滿足關系:
(
)已知每生產1萬件合格的儀器可以盈利2萬元,但每生產1萬件次品將虧損1萬元,故廠方希望定出合適的日產量.(注:次品率=次品數/生產量)
(1)試將生產這種儀器元件每天的盈利額(萬元)表示為日產量
(萬件)的函數;
(2)當日產量為多少時,可獲得最大利潤?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的左焦點
,直線
與y軸交于點P.且與橢圓交于A,B兩點.A為橢圓的右頂點,B在x軸上的射影恰為
。
(1)求橢圓E的方程;
(2)M為橢圓E在第一象限部分上一點,直線MP與橢圓交于另一點N,若,求
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com